
CEN

CWA 15748
WORKSHOP
July 2023
AGREEMENT

ICS 35.240.50
English version

Extensions for Financial Services (XFS) interface specification
Release 3.10
Clarifications for Device Class Interfaces

Revision 3.10.32
July 2023
This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the constitution of which is indicated in the foreword of this Workshop Agreement.

The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the National Members of CEN but neither the National Members of CEN nor the CEN Management Centre can be held accountable for the technical content of this CEN Workshop Agreement or possible conflicts with standards or legislation.

This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members.

This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies.

CEN members are the national standards bodies of Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

[image: image1.jpg]

EUROPEAN COMMITTEE FOR STANDARDIZATION

COMITÉ EUROPÉEN DE NORMALISATION

EUROPÄISCHES KOMITEE FÜR NORMUNG

Management Centre: rue de Stassart, 36 B-1050 Brussels

© 2023 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

Ref. No. CWA 15748-1:2007 D/E/F
Table of Contents

6Introduction

7Generic Clarifications

8Device Classes

8Application Programming Interface / Service Provider Interface

8Clarifications for Synchronous Functions

8Clarifications for Configuration Information

8Clarifications for Application Processes, Threads and Blocking Functions

11Clarifications for WFS_SYSE_HARDWARE_ERROR, WFS_SYSE_SOFTWARE_ERROR, WFS_SYSE_USER_ERROR and WFS_SYSE_FRAUD_ATTEMPT

12Clarifications for WFS_SYSE_DEVICE_STATUS

13Clarifications for WFSOpen

13Clarifications for WFSAsyncOpen

13Clarifications for WFPOpen

13Clarifications for WFMOutputTraceData

13Clarifications for WFMCreateKey

14Clarifications for WFMDeleteKey

14Clarifications for WFMDeleteValue

14Clarifications for WFMOpenKey

14Clarifications for WFMQueryValue

14Clarifications for WFMSetValue

14Clarifications for XFSAPI.H

15Clarifications for XFSADMIN.H

15Clarifications for XFSCONF.H

15Clarifications for XFSSPI.H

16Printers and Scanners

16Clarifications for WFS_INF_PTR_STATUS

16Clarifications for WFS_INF_PTR_CAPABILITIES

16Clarifications for WFS_INF_PTR_QUERY_FIELD

17Clarifications for WFS_INF_PTR_CODELINEMAPPING

17Clarifications for WFS_CMD_PTR_CONTROL_MEDIA

17Clarifications for WFS_CMD_PTR_PRINT_FORM

17Clarifications for WFS_CMD_PTR_READ_FORM

18Clarifications for WFS_CMD_PTR_READ_IMAGE

18Clarifications for WFS_CMD_PTR_PRINT_RAW_FILE

18Clarifications for WFS_CMD_PTR_LOAD_DEFINITION

19Clarifications for WFS_SRVE_PTR_MEDIATAKEN

19Clarifications for WFS_EXEE_PTR_POWER_SAVE_CHANGE

19Clarifications for WFS_SRVE_PTR_MEDIAAUTORETRACTED

19Clarifications for Definition Syntax

20Clarifications for Form Definition

20Clarifications for Subform Definition

20Clarifications for Field Definition

20Clarifications for C-Header File

21Identification Card Units

21Clarifications for WFS_INF_IDC_STATUS

21Clarifications for WFS_INF_IDC_CAPABILITIES

21Clarifications for WFS_INF_IDC_READ_TRACK

21Clarifications for WFS_CMD_IDC_RETAIN_CARD

21Clarifications for WFS_CMD_IDC_READ_RAW_DATA

21Clarifications for WFS_CMD_IDC_CHIP_POWER

22Clarifications for WFS_EXEE_IDC_POWER_SAVE_CHANGE

22Clarifications for C - Header File

23Cash Dispensers

23Clarifications for Cash Dispensers

23Clarifications for WFS_INF_CDM_STATUS

23Clarifications for WFS_INF_CDM_CAPABILITIES

24Clarifications for WFS_INF_CDM_CASH_UNIT_INFO

26Clarifications for WFS_INF_CDM_MIX_TYPES

26Clarifications for WFS_INF_CDM_PRESENT_STATUS

27Clarifications for WFS_CMD_CDM_DENOMINATE

27Clarifications for WFS_CMD_CDM_DISPENSE

27Clarifications for WFS_CMD_CDM_PRESENT

28Clarifications for WFS_CMD_CDM_COUNT

28Clarifications for WFS_CMD_CDM_RETRACT

29Clarifications for WFS_CMD_CDM_START_EXCHANGE

29Clarifications for WFS_CMD_CDM_END_EXCHANGE

29Clarifications for WFS_CMD_CDM_CALIBRATE_CASH_UNIT

30Clarifications for WFS_CMD_CDM_RESET

31Clarifications for WFS_CMD_CDM_TEST_CASH_UNITS

32Clarifications for WFS_EXEE_CDM_INCOMPLETEDISPENSE

32Clarifications for WFS_CMD_CDM_POWER_SAVE_CONTROL

32Clarifications for WFS_CMD_CDM_PREPARE_DISPENSE

32Clarifications for WFS_EXEE_CDM_POWER_SAVE_CHANGE

32Clarifications for C - Header File

34Personal Identification Number Keypads (PIN Pads)

34Clarifications for Section 3. References

34Clarifications for WFS_INF_PIN_CAPABILITIES

34Clarifications for WFS_CMD_PIN_CRYPT

34Clarifications for WFS_CMD_PIN_GET_DATA

35Clarifications for WFS_CMD_PIN_IMPORT_KEY

35Clarifications for WFS_CMD_PIN_LOCAL_DES

35Clarifications for WFS_CMD_PIN_CREATE_OFFSET

35Clarifications for WFS_CMD_PIN_GET_PINBLOCK

35Clarifications for WFS_CMD_PIN_INITIALIZATION

36Clarifications for WFS_CMD_CDM_RESET

36Clarifications for WFS_CMD_PIN_SECURE_MSG_SEND

36Clarifications for WFS_CMD_PIN_SECURE_MSG_RECEIVE

37Clarifications for WFS_CMD_PIN_ENC_IO

37Clarifications for WFS_CMD_PIN_SET_PINBLOCK_DATA

38Clarifications for WFS_CMD_PIN_SET_LOGICAL_HSM

38Clarifications for WFS_CMD_PIN_IMPORT_RSA_SIGNED_DES_KEY

38Clarifications for WFS_CMD_PIN_IMPORT_RSA_ENCYPHERED_PKCS7_KEY

39Clarifications for WFS_CMD_PIN_EMV_IMPORT_PUBLIC_KEY

39Clarifications for WFS_CMD_PIN_LOAD_CERTIFICATE

39Clarifications for WFS_EXEE_PIN_POWER_SAVE_CHANGE

39Clarifications for C-Header File

40Clarifications for C - Header File

41Clarifications for Remote Key Exchange

42Clarifications for Replace Certificate

42Clarifications for Luxemburg Protocol

42Clarifications for Luxemburg-specific Header File

43Check Reader/Scanner

43Clarifications for WFS_EXEE_CHK_POWER_SAVE_CHANGE

44Depository Unit

44Clarifications for WFS_CMD_DEP_ENTRY

44Clarifications for WFS_CMD_DEP_RETRACT

45Clarifications for WFS_EXEE_DEP_POWER_SAVE_CHANGE

46Text Terminal Unit

46Clarifications for Definition Syntax

46Clarifications for WFS_CMD_TTU_SET_LED

46Clarifications for WFS_CMD_TTU_POWER_SAVE_CONTROL

46Clarifications for WFS_EXEE_TTU_POWER_SAVE_CHANGE

47Sensors and Indicators Units

47Clarifications for Enhanced Audio Controller Overview

47Clarifications for WFS_INF_SIU_STATUS

47Clarifications for WFS_CMD_SIU_SET_GUIDLIGHT

48Clarifications for WFS_EXEE_SIU_POWER_SAVE_CHANGE

49Vendor Dependent Mode

49Clarifications for WFS_CMD_VDM_ENTER_MODE_ACK

49Clarifications for WFS_SRVE_VDM_INTERFACE_ CHANGED

50Cameras

50Clarifications for WFS_INF_CAM_STATUS

51Alarms

52Card Embossing Unit

52Clarifications for WFS_CMD_CEU_EMBOSS_CARD

52Clarifications for WFS_EXEESRVE_CEU_MEDIAREMOVED

52Clarifications for WFS_EXEE_CEU_POWER_SAVE_CHANGE

53Cash In Module

53Clarifications for Cash-In Module

53Clarifications for WFS_INF_CIM_STATUS

53Clarifications for WFS_INF_CIM_CAPABILITIES

55Clarifications for WFS_INF_CIM_CASH_UNIT_INFO

56Clarifications for WFS_INF_CIM_BANKNOTE_TYPES

56Clarifications for WFS_INF_CIM_CASH_IN_STATUS

57Clarifications for WFS_INF_CIM_GET_P6_INFO

58Clarifications for WFS_INF_CIM_GET_P6_SIGNATURE

58Clarifications for WFS_INF_CIM_GET_ITEM_INFO

59Clarifications for WFS_CMD_CIM_CASH_IN_START

60Clarifications for WFS_CMD_CIM_CASH_IN

61Clarifications for WFS_CMD_CIM_CASH_IN_END

61Clarifications for WFS_CMD_CIM_CASH_IN_ROLLBACK

61Clarifications for WFS_CMD_CIM_RETRACT

62Clarifications for WFS_CMD_CIM_OPEN_SHUTTER

62Clarifications for WFS_CMD_CIM_CLOSE_SHUTTER

62Clarifications for WFS_CMD_CIM_SET_CASH_UNIT_INFO

62Clarifications for WFS_CMD_CIM_START_EXCHANGE

63Clarifications for WFS_CMD_CIM_END_EXCHANGE

63Clarifications for WFS_CMD_CIM_RESET

64Clarifications for WFS_CMD_CIM_CONFIGURE_NOTETYPES

65Clarifications for WFS_CMD_CIM_CREATE_P6_SIGNATURE

65Clarifications for WFS_CMD_CIM_POWER_SAVE_CONTROL

65Clarifications for WFS_EXEE_CIM_CASHUNITERROR

65Clarifications for WFS_SRVE_CIM_ITEMSTAKEN

66Clarifications for WFS_EXEE_CIM_INPUTREFUSE

66Clarifications for WFS_SRVE_CIM_ITEMSPRESENTED

66Clarifications for WFS_EXEE_CIM_POWER_SAVE_CHANGE

66Clarifications for Stacker Becomes Full (Explicit Shutter Control)

67Clarifications for Bill Recognition Error (Explicit Shutter Control)

68Clarifications for OK Transaction (Implicit Shutter Control)

68Clarifications for Cancellation by Customer (Implicit Shutter Control)

68Clarifications for Implicit Control of the Shutter - WFS_EXEE_CIM_SUBCASHIN event

69Clarifications for Multiple Rollback Notes (Implicit Shutter Control)

718.16 Multiple Bunch Timeout Handling

71No Items Inserted

71First Bunch Not Taken

73Last Bunch Taken

74Card Dispenser

74Clarifications for WFS_INF_CRD_STATUS

74Clarifications for WFS_EXEE_CRD_POWER_SAVE_CHANGE

75Bar Code Reader

75Clarifications for WFS_EXEE_BCR_POWER_SAVE_CHANGE

75Clarifications for C - Header File

76Item Processing Module

76Clarifications for WFS_INF_IPM_STATUS

76Clarifications for WFS_INF_IPM_CAPABILITIES

77Clarifications for WFS_INF_IPM_MEDIA_IN

77Clarifications for WFS_INF_IPM_TRANSACTION_STATUS

79Clarifications for WFS_CMD_IPM_MEDIA_IN

79Clarifications for WFS_CMD_IPM_READ_IMAGE

80Clarifications for WFS_CMD_IPM_GET_NEXT_ITEM

80Clarifications for WFS_CMD_IPM_PRESENT_MEDIA

80Clarifications for WFS_CMD_IPM_RETRACT_MEDIA

80Clarifications for WFS_CMD_IPM_PRINT_TEXT

81Clarifications for WFS_CMD_IPM_RESET

81Clarifications for WFS_CMD_IPM_GET_IMAGE_AFTER_PRINT

81Clarifications for WFS_SRVE_IPM_MEDIATAKEN

81Clarifications for WFS_EXEE_IPM_MEDIAREFUSED

82Clarifications for WFS_EXEE_IPM_MEDIADATA

82Clarifications for WFS_EXEE_IPM_POWER_SAVE_CHANGE

83Migration Documents

83Cash In Module

83Clarifications for WFS_INF_CIM_CASH_IN_STATUS

Introduction

These release notes provide clarifications and explanations for the Device Class Interface Programmer’s References Revision 3.10. Rather than updating the Device Class Interface specifications each time a new clarification is required, CEN/ISSS established release notes should be developed that aggregates the clarifications and explanations. These release notes serve that purpose. The release notes will provide clarifications of problems reported to CEN/ISSS which do not require functional changes. When a Device Class Interface Programmer’s Reference is updated for functional changes then all clarifications contained in these release notes at the current revision level for that Device Class will be incorporated into the new revision.

The clarification will be incorporated into the appropriate section copied from the affected Device Class Interface Programmer’s Reference and be printed as bold and underlined.

Generic Clarifications

No clarifications available.
Device Classes

Application Programming Interface / Service Provider Interface

Class Name

API/SPI

Clarifications for Synchronous Functions
…

If a blocking operation is not completed immediately in a Windows 3.x system, the XFS Manager executes a Windows message loop on behalf of the calling thread, thereby keeping the Windows system running. See Section 4.12 for a more detailed discussion of process, threads and message loops. In Windows NT, tThe calling application thread is blocked on request completion. A thread may have only one blocking XFS call outstanding at any one time. See Section 4.12 for additional discussion of the management of synchronous functions, including replacement of the default message loop.
Clarifications for Configuration Information

…

These functions are used by Service Providers and applications to write and retrieve the configuration information for an XFS subsystem, which is stored in a hierarchical structure called the Windows Registry. The structure and the functions are based on the Win32/Win64 Registry architecture and API functions, and are implemented in Windows NT/98 and future versions of Windows using the Registry and the associated functions.
…

The local PC dependent configuration information is stored beneath the following Registry key. A pre-defined handle (WFS_CFG_HKEY_MACHINE_XFS_ROOT) can be used to access this key in the configuration functions defined in Section 8.

[image: image2.wmf]HKEY_LOCAL_MACHINE

XFS

SOFTWARE

User dependent configuration information is stored in the HKEY_USERS section of the Registry. Pre-defined handles (WFS_CFG_HKEY_USER_DEFAULT_XFS_ROOT and WFS_CFG_CURRENT_USER_XFS_ROOT) can be used to access these keys in the configuration functions defined in Section 8.
Clarifications for Application Processes, Threads and Blocking Functions
An application process contains one or more threads of execution. The XFS interface is designed to work in both the single-threaded versions of the Windows operating systems (Windows 3.1 and Windows for Workgroups) and in the multi-threaded versions of Windows (Windows NT and future versions of Windows). All references to threads in this document refer to actual threads in multi-threaded Windows environments. In single-threaded environments, “thread” is synonymous with “process.”

Within the XFS Manager, a blocking (synchronous) function is handled as follows:
The XFS Manager initiates the operation, and then enters a loop in which it dispatches any Windows messages (thus yielding the processor to other applications as necessary) and checks for the completion of the operation. When the operation completes, or WFSCancelBlockingCall is invoked, the blocking operation completes with an appropriate result.

1. The XFS Manager creates a transitory HWND on the calling thread to receive the completion message for the operation e.g. WFS_EXECUTE_COMPLETE.

2. The XFS Manager calls the Service Provider WFP API, passing the transitory HWND.

3. The XFS Manager waits for the completion message to be received. It does this by entering a loop equivalent to the following pseudo code, calling the current blocking hook (a Windows message dispatch routine) waiting for the completion message to be received from the Service Provider.

for(;;) {
/* flush messages for good user response */
for(;;) {
BlockingHook();
/* check for WFSCancelBlockingCall() */
if (operation_cancelled())
 break;
/* check to see if operation completed */
if(operation_completed())
 break; /* normal completion */
}

where the Default Blocking Hook is equivalent to:

BOOL DefaultBlockingHook(void) {
 MSG msg = {0};
 BOOL ret = GetMessage(&msg, NULL, 0, 0);
 if((int) ret != -1) {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 /* FALSE if we got a WM_QUIT message */
 return(ret);
}
4. On reception of the completion message, the XFS Manager exits the loop.

5. The XFS Manager destroys the transitory HWND.

6. The blocking operation completes. The blocking function return code is copied from the completion message lpWFSResult hResult field. If applicable, the lpWFSResult is also returned.

The thread, on which the blocking function has been called, is not permitted to issue any XFS calls other than the following two specific functions provided to assist the developer in this situation.

· WFSIsBlocking determines whether or not a blocking function is in progress.

· WFSCancelBlockingCall cancels a blocking function in progress.

Any other XFS function, called from a thread with a blocking function in progress, will fail with the error WFS_ERR_OP_IN_PROGRESS.

Developers must be aware that WFSIsBlocking cannot simply be called in a loop waiting for the blocking function to complete. The application must allow the message handler to return to allow control to return to the blocking hook. Otherwise, the blocking function will not complete.

When a Windows message is received for a thread for which a blocking operation is in progress, the thread is not permitted to issue any XFS calls during the processing of the message, other than the two specific functions provided to assist the programmer in this situation:

· WFSIsBlocking determines whether or not a blocking call is in progress.

· WFSCancelBlockingCall cancels a blocking call in progress.

Any other XFS function called when a blocking call is in progress fails with the error WFS_ERR_OP_IN_PROGRESS. This restriction applies to requests for both blocking and non-blocking operations.

Although this mechanism is sufficient for simple applications, it cannot support those applications which require more complex message processing while blocked for a synchronous calla blocking function is executing, such as processing messages relating to MDI (multiple document interface) events, accelerator key translations, and modeless dialogs. For such applications, the XFS API includes the function WFSSetBlockingHook, which allows the programmerdeveloper to define a special routine custom blocking hook which will be called instead of the default message dispatch routine blocking hook described above. This function gives an application the ability to execute its own routine at blocking time in place of the default routine. It is not intended as a mechanism for performing general application functions while blocked; it is still true that the only XFS functions that may be called from a blocking routine are WFSIsBlocking and WFSCancelBlockingCall. The asynchronous versions of the XFS functions must be used to allow an application to continue processing while an operation is in progress. Developers must be aware of their responsibility when replacing the default blocking hook. The developer must ensure:
· All messages are processed in the order received. If not, the potential exists for the Service Provider to be blamed for sending messages in the wrong order e.g. a WFS_EXECUTE_EVENT message after a WFS_EXECUTE_COMPLETE.
· All messages are processed. If not, the potential exists that the thread message queue will fill preventing other messages being added to the queue, including the Service Provider attempt to post the completion message being waited on.

The developer must be aware that replacing the default blocking hook impacts the process. The custom blocking hook will be called from every thread which makes use of XFS blocking functions.

This mechanism is provided to allow a Windows 3.x or Windows for Workgroups application to make blocking calls without blocking the rest of the system. Under Windows NT and future multi-threaded, preemptive versions of Windows, the default blocking action is to suspend the calling application's thread until the request completes. This is because the system is not blocked by a single application waiting for an operation to complete, and hence not calling PeekMessage or GetMessage, which are required in the non-preemptive systems in order to cause the application to yield control.

Therefore, if a single-threaded application is targeted at both single- and multi-threaded environments, and relies on this functionality, it should install a specific blocking hook by calling WFSSetBlockingHook, even if the default hook would suffice. This maximizes the portability of applications that depend on the blocking hook behavior. Programmers who are constrained to use blocking mode - for example, as part of an existing application which is being ported - should be aware of the semantics of blocking operations.

In the XFS implementation in a single-threaded environment, the blocking function operates as follows. When an application requests a blocking XFS API function, the XFS Manager initiates the requested function and then enters a loop which is equivalent to the following pseudo-code:

for(;;) {

/* flush messages for good user response */

DefaultBlockingHook();

/* check for WFSCancelBlockingCall() */

if(operation_cancelled())

break;

/* check to see if operation completed */

if(operation_complete())

break;

/* normal completion */

}

The DefaultBlockingHook routine is equivalent to:

BOOL DefaultBlockingHook(void) {

MSG msg;

BOOL ret;

/* Wait for the next message */

ret = GetMessage(&msg, NULL, 0, 0);

if((int) ret != -1) {

TranslateMessage(&msg);

DispatchMessage(&msg);

}

/* FALSE if we got a WM_QUIT message */

return(ret);

}

In a multi-threaded environment, the developer of a multi-threaded application must be aware that it is the responsibility of the application, not the XFS Manager, to synchronize access to a service by multiple threads. Failure to synchronize calls to a service leads to unpredictable results; for example, if two threads "simultaneously" issue WFSExecute requests to send data to the same service, there is no guarantee as to the order in which the data is sent. This is true in general; the application is responsible for coordinating access by multiple threads to any object (e.g. other forms of I/O, such as file I/O), using appropriate synchronization mechanisms. The XFS Manager can not, and will not, address these issues. The possible consequences of failing to observe these rules are beyond the scope of this specification.

In order to allow maximum flexibility in the design and implementation of applications, especially in multi-threaded environments, the concept of "application identity" can optionally be managed explicitly by the application developer using the concept of application handles. See Sections 4.5 and 4.8.2 for additional discussion of this concept.
Clarifications for WFS_SYSE_HARDWARE_ERROR, WFS_SYSE_SOFTWARE_ERROR, WFS_SYSE_USER_ERROR and WFS_SYSE_FRAUD_ATTEMPT
Field
Description

lpszLogicalName
Pointer to the logical service name of the service that generated the error

lpszPhysicalName
Pointer to the physical service name of the service that generated the error

lpszWorkstationName
Pointer to the name of the workstation in which the logical service name is defined (if any)

lpszAppID
Pointer to the application ID associated with the session that generated the error (if any)

dwAction
The action required to manage the error. Possible values are:

Value
Meaning

WFS_ERR_ACT_NOACTION
No action required or error was autorecovered.

WFS_ERR_ACT_RESET
Reset device to attempt recovery using WFS_CMD_XXX_RESET, but should not be used excessively. Intervention is not required although if repeated attempts are unsuccessful then WFS_ERR_ACT_HWMAINT may be reported.
WFS_ERR_ACT_SWERROR
A software error occurred. Contact software vendor.

WFS_ERR_ACT_CONFIG
A configuration error occurred. Check configuration.

WFS_ERR_ACT_HWCLEAR
Recovery is not possible. A manual intervention for clearing the device is required. This value is only used for hardware errors. This value is typically returned when a hardware error has occurred which requires banking personnel specific maintenance, e.g. ‘replace paper’, or ‘remove cards from retain bin’.

WFS_ERR_ACT_HWMAINT
Recovery is not possible. A technical maintenance intervention is required. This value is only used for hardware errors and fraud attempts. This value is typically returned when a hardware error or fraud attempt has occurred which requires field engineer specific maintenance activity. WFS_CMD_XXX_RESET may be used to attempt recovery after intervention, but should not be used excessively – Vendor Dependent Mode may be required to recover the device.

WFS_ERR_ACT_SUSPEND
Device will attempt auto recovery and will advise any further action required via a Device Status Event.

dwSize
The size in bytes of the following description

lpbDescription
Pointer to a vendor-specific description of the error.

Note:

The following table describes what dwAction may be returned for the various Hardware, Software, User Error and Fraud Attempt Events. The dwAction definitions above give guidance on what an application should do next when one of these events is received. Care should be taken to avoid calling WFS_CMD_XXX_RESET excessively without intervention, as this may lead to damage to the device or media contained in the device if for example media is jammed in the device:
	
	Generated on Hardware Event?
	Generated on Software Event?
	Generated on User Event?
	Generated on Fraud Event?

	_NOACTION
	Yes
	Yes
	Yes
	Yes

	_RESET
	Yes
	Yes
	Yes
	No

	_SWERROR
	No
	Yes
	No
	No

	_CONFIG
	Yes
	Yes
	No
	No

	_HWCLEAR
	Yes
	No
	No
	No

	_HWMAINT
	Yes
	No
	No
	Yes

	_SUSPEND
	No
	No
	Yes
	No

Clarifications for WFS_SYSE_DEVICE_STATUS

Field
Description

RequestID
(not used)

hService
Service handle identifying the session that created the result, i.e. the service handle of the session that the event is sent to.

tsTimestamp
Time the status change occurred (local time, in a Win32 SYSTEMTIME structure).
hResult
(not used)

u.dwEventID
= WFS_SYSE_DEVICE_STATUS

lpBuffer
Pointer to a WFSDEVSTATUS structure:

typedef struct
wfs_devstatus {

LPSTR

lpszPhysicalName;

LPSTR

lpszWorkstationName;

DWORD

dwState;

} WFSDEVSTATUS, *LPWFSDEVSTATUS;
The members of this structure are:

Field
Description

lpszPhysicalName
Pointer to the physical service name of the service that changed its state.

lpszWorkstationName
Pointer to the name of the workstation in which the logical service name is defined.

dwState
Specifies the new state of the physical device managed by the service as one of the following:

Value
Meaning

…
WFS_STAT_DEVOFFLINE
The device is offline (e.g. the operator has taken the device offline by turning a switch or pulling out the device).
Clarifications for WFSOpen
Parameters
LPCSTR lpszLogicalName
Points to a null-terminated string containing the pre-defined logical name of a service. It is a high level name such as "SYSJOURNAL1", "PASSBOOKPTR3" or "CASHDISP02," that is used by the XFS Manager and the Service Provider solely as a key to obtain the specific configuration information they need.
…

LPCSTR lpszAppID
Points to a null-terminated string containing the application ID; the pointer may be NULL if the ID is not used. This ID may be used by services in a variety of ways; e.g. it is included in the SYSTEM_EVENT message for undeliverable events, to aid in finding system problems

Clarifications for WFSAsyncOpen
Parameters
LPCSTR lpszLogicalName
See WFSOpen.

…

LPCSTR lpszAppID
Points to a null-terminated string containing the application ID. See WFSOpen.
Clarifications for WFPOpen

Parameters

…

LPCSTR lpszLogicalName
Points to a null-terminated string containing the pre-defined logical name of a service. It is a high level name such as "SYSJOURNAL1," "PASSBOOKPTR3" or "ATM02," that is used by the XFS Manager and the Service Provider as a key to obtain the specific configuration
…

LPCSTR lpszAppID
Pointer to a null terminated string containing the application ID; the pointer may be NULL if the ID is not used.

Clarifications for WFMOutputTraceData
Parameters
LPCSTR lpszData
Pointer to a null-terminated string containing the trace data.

Clarifications for WFMCreateKey

Parameters

…

LPCSTR lpszSubKey
Pointer to a null-terminated string containing the name of the key to be created or opened.
…

Be aware that when the WFMCreateKey is used for the first time and the hKey parameter is set to WFS_CFG_HKEY_XFS_ROOT then the existing registry structure will be migrated from HKEY_CLASSES_ROOT to HKEY_LOCAL_MACHINE. If any of the other values WFS_CFG_HKEY_MACHINE_XFS_ROOT, or WFS_CFG_HKEY_USER_DEFAULT_XFS_ROOT or WFS_CFG_CURRENT_USER_XFS_ROOT If either of the new values WFS_CFG_MACHINE_XFS_ROOT or WFS_CFG_USER_DEFAULT_XFS_ROOT are used then no migration will take place for this process. The assumption is that any process using the new key values will be doing its own migration. The reason migration does not always take place is that some applications will require access to both the old and new key roots so that they can migrate their non-CEN keys and values.
WFS_CFG_HKEY_XFS_ROOT is defined in XFS 2.x as HKEY_CLASSES_ROOT\WOSA/XFS_ROOT.

…
Clarifications for WFMDeleteKey

Parameters

…

LPCSTR lpszSubKey
Pointer to a null-terminated string specifying the name of the key to be deleted.

Clarifications for WFMDeleteValue

Parameters

…

LPCSTR lpszValue
Pointer to a null-terminated string specifying the name of the value to be deleted.

Clarifications for WFMOpenKey
Parameters

…

LPCSTR lpszSubKey
Pointer to a null-terminated string containing the name of the key to be opened. If this parameter is NULL, or points to an empty string, the function opens another handle to the key identified by the hKey parameter (and does not close any previously opened handles).
Clarifications for WFMQueryValue
Parameters

…

LPCSTR lpszValueName
Pointer to a null-terminated string specifying the name of the value to be queried.

Clarifications for WFMSetValue

Parameters

…

LPCSTR lpszValueName
Pointer to a null-terminated string containing the name of the value being set. If a value with this name does not already exist in the specified key, it is added to the key.

LPCSTR lpszData
Pointer to a buffer containing the data (a null-terminated character string) to be stored with the specified value name.

Clarifications for XFSAPI.H

…

HRESULT extern WINAPI WFSOpen (LPCSTR lpszLogicalName, HAPP hApp, LPCSTR lpszAppID, DWORD dwTraceLevel, DWORD dwTimeOut, DWORD dwSrvcVersionsRequired, LPWFSVERSION lpSrvcVersion, LPWFSVERSION lpSPIVersion, LPHSERVICE lphService);

…
HRESULT extern WINAPI WFSAsyncOpen (LPCSTR lpszLogicalName, HAPP hApp, LPCSTR lpszAppID, DWORD dwTraceLevel, DWORD dwTimeOut, LPHSERVICE lphService, HWND hWnd, DWORD dwSrvcVersionsRequired, LPWFSVERSION lpSrvcVersion, LPWFSVERSION lpSPIVersion, LPREQUESTID lpRequestID);

Clarifications for XFSADMIN.H

…

HRESULT extern WINAPI WFMOutputTraceData (LPCSTR lpszData);

Clarifications for XFSCONF.H

…

/******* Value of hKey ***/

#define WFS_CFG_HKEY_XFS_ROOT ((HKEY)1)

#define WFS_CFG_HKEY_MACHINE_XFS_ROOT ((HKEY)2)

#define WFS_CFG_HKEY_USER_DEFAULT_XFS_ROOT ((HKEY)3)

#define WFS_CFG_CURRENT_USER_XFS_ROOT ((HKEY)4)

// The following values are added for backwards compatibility reasons

#define WFS_CFG_MACHINE_XFS_ROOT WFS_CFG_HKEY_MACHINE_XFS_ROOT

#define WFS_CFG_USER_DEFAULT_XFS_ROOT WFS_CFG_HKEY_USER_DEFAULT_XFS_ROOT

…

HRESULT extern WINAPI WFMCreateKey (HKEY hKey, LPCSTR lpszSubKey, PHKEY phkResult, LPDWORD lpdwDisposition);

HRESULT extern WINAPI WFMDeleteKey (HKEY hKey, LPCSTR lpszSubKey);

HRESULT extern WINAPI WFMDeleteValue (HKEY hKey, LPCSTR lpszValue);

…

HRESULT extern WINAPI WFMOpenKey (HKEY hKey, LPCSTR lpszSubKey, PHKEY phkResult);

HRESULT extern WINAPI WFMQueryValue (HKEY hKey, LPCSTR lpszValueName, LPSTR lpszData, LPDWORD lpcchData);

HRESULT extern WINAPI WFMSetValue (HKEY hKey, LPCSTR lpszValueName, LPSTR lpszData, DWORD cchData);

Clarifications for XFSSPI.H

HRESULT extern WINAPI WFPOpen (HSERVICE hService, LPCSTR lpszLogicalName, HAPP hApp, LPCSTR lpszAppID, DWORD dwTraceLevel, DWORD dwTimeOut, HWND hWnd, REQUESTID ReqID, HPROVIDER hProvider, DWORD dwSPIVersionsRequired, LPWFSVERSION lpSPIVersion, DWORD dwSrvcVersionsRequired, LPWFSVERSION lpSrvcVersion);

Printers and Scanners
Class Name

PTR

Clarifications for WFS_INF_PTR_STATUS

fwMedia
Specifies the state of the print media (i.e. receipt, statement, passbook, etc.) as one of the following values. This field does not apply to journal printers:

Value
Meaning

WFS_PTR_MEDIAPRESENT
Media is in the print position, on the stacker or on the transport (i.e. a passbook in the parking station is not considered to be present). On devices with continuous paper supplies, this value is set when paper is under the print head. On devices with no sheet supply or individual sheet supplies, this value is set when paper/media is successfully inserted/loaded.

Clarifications for WFS_INF_PTR_CAPABILITIES
Output Param
…
fwType
Specifies the type(s) of the physical device driven by the logical service, as a combination of the following flags:

Value
Meaning

WFS_PTR_TYPESCANNER
Device is a scanner with that may have printing capabilities.

fwControl
Specifies the manner in which media can be controlled, as a combination of the following flags (zero if none of the choices is supported):

Value
Meaning

WFS_PTR_CTRLFLUSH
Device can be sent data that is buffered internally by the device, and flushed to the printer on request.

…

usAutoRetractPeriod
Specifies the number of seconds before the device will automatically retract the presented media. If the command that generated the media is still active when the media is automatically retracted, the command will complete with a WFS_ERR_PTR_MEDIARETRACTED error. If the device does not retract media automatically this value will be zero.

Clarifications for WFS_INF_PTR_QUERY_FIELD

Output Param
LPWFSFRMFIELD *lppFields;

fwOverflow
Specifies how an overflow of field data should be handled and can be one of the following values:

Value
Meaning

WFS_FRM_OVFWORDWRAP
If the field can hold more than one line the text is wrapped around. Wrapping is performed, where possible, by splitting the line on a space character or a hyphen character or any other character which is used to join two words together.
Clarifications for WFS_INF_PTR_CODELINEMAPPING
Input Param
LPWFSPTRCODELINEMAPPING lpCodelineMapping;
wCodeLlineFormat
Specifies the code-line format that the mapping for the special characters is required for. This field can be one of the following values:
…
Output Param
LPWFSPTRCODELINEMAPPINGOUT lpCodelineMapping;
wCodeLlineFormat
Specifies the code-line format that is being reported.

Clarifications for WFS_CMD_PTR_CONTROL_MEDIA
Input Param
LPDWORD lpdwMediaControl;

lpdwMediaControl
Pointer to a value which specifies the manner in which the media should be handled, as a combination of the following bit-flags:

Value
Meaning

…
….

WFS_PTR_CTRLFLUSH
Flush any data to the printer that has not yet been physically printed from previous WFS_CMD_PTR_PRINT_FORM or WFS_CMD_PTR_PRINT_RAW_FILE commands. This will synchronize the application with the device to ensure that all data has been physically printed.
It is not possible to combine the flags WFS_PTR_CTRLEJECT, WFS_PTR_CTRLRETRACT, WFS_PTR_CTRLPARK, and WFS_PTR_CTRLEXPEL CTRLEXPEL and WFS_PTR_CTRLEJECTTOTRANSPORT with each other. In this case the command completes with WFS_ERR_INVALID_DATA.

Clarifications for WFS_CMD_PTR_PRINT_FORM
Input Param
…
dwMediaControl
Specifies the manner in which the media should be handled after the printing is done, as a combination of the flags described under WFS_CMD_PTR_CONTROL_MEDIA. A zero value of this parameter means to do none of these actions, as when printing multiple forms on a single page. When zero is specified and the device does not support the WFS_PTR_CTRLFLUSH capability, the data will be printed immediately. If the device supports WFS_PTR_CTRLFLUSH, the data may be buffered and the WFS_CMD_PTR_CONTROL_MEDIA command should be used to synchronize the application with the device to ensure that all data has been physically printed.
Clarifications for WFS_CMD_PTR_READ_FORM

Output Param
..

lpszFields
Pointer to a series of "<FieldName>=<FieldValue>" strings, where each string is null-terminated with the entire field string terminating with two null characters. If the field is an index field, then the syntax of the string is instead "<FieldName>[<index>]=<FieldValue>", where <index> specifies the zero-based element of the index field. An empty list may be indicated by either a NULL pointer or a pointer to two consecutive null characters.

lpszUNICODEFields
Pointer to a series of "<FieldName>=<FieldValue>" UNICODE strings, where each string is null-terminated with the entire field string terminating with two null characters. If the field is an index field, then the syntax of the string is instead "<FieldName>[<index>]=<FieldValue>", where <index> specifies the zero-based element of the index field. An empty list may be indicated by either a NULL pointer or a pointer to two consecutive null characters.

Clarifications for WFS_CMD_PTR_READ_IMAGE
Input Param
…
lpszFrontImageFile
File specifying where to store the front image, e.g. “C:\Temp\FrontImage.bmp”. If a NULL pointer is supplied then the front image data will be returned in the output parameter.
By default lpsz… path or file names are single zero terminated and can not contain UNICODE characters.
To reduce the size of data sent between the Application and the Service Provider it is recommended to make use of this parameter.

lpszBackImageFile
File specifying where to store the back image, e.g. “C:\Temp\BackImage.bmp”. If a NULL pointer is supplied then the back image data will be returned in the output structure.
By default lpsz… path or file names are single zero terminated and can not contain UNICODE characters.
To reduce the size of data sent between the application and the Service Provider it is recommended to make use of this parameter.

Clarifications for WFS_CMD_PTR_PRINT_RAW_FILE
Input Param
…
lpszFileName
Pointer to the null-terminated file name. This is the full path and file name of the file to be printed.
By default lpsz… path or file names are single zero terminated and can not contain UNICODE characters.
Clarifications for WFS_CMD_PTR_LOAD_DEFINITION
Description
This command is used to load a form (including sub-forms and frames) or media definition into the list of available forms. Once a form or media definition has been loaded through this command it can be used by any of the other form/media definition processing commands. Forms and media definitions loaded through this command are persistently available across re-boots. When a form or media definition is loaded a WFS_SRVE_PTR_FORMLOADED WFS_SRVE_PTR_DEFINITIONLOADED event is generated to inform applications that a form or media definition has been added or replaced.

Input Param
…
lpszFileName
Pointer to the null-terminated file name. This is the full path and file name of the file to be loaded. The file contains the form (including sub-forms and frames) or media definition in text format as described in the section Fehler! Verweisquelle konnte nicht gefunden werden. (ASCII or UNICODE). Only one form or media definition can be defined in the file.
By default lpsz… path or file names are single zero terminated and can not contain UNICODE characters.
Clarifications for WFS_SRVE_PTR_MEDIATAKEN

Description
This event is sent when the media is taken from the exit slot following the completion of a successful eject operation or following a WFS_EXEE_PTR_MEDIAREJECTED event. For devices that do not physically move media, this event may also be generated when the media is taken from the device.
Clarifications for WFS_EXEE_PTR_POWER_SAVE_CHANGE
Comments
None. If another device class compounded with this device enters into a power saving mode, this device will automatically enter into the same power saving mode and this event will be generated.
Clarifications for WFS_SRVE_PTR_MEDIAAUTORETRACTED

Description
This event indicates when media has been automatically retracted by the device. Support for this event is indicated when the usAutoRetractPeriod field of the WFS_INF_PTR_CAPABILITIES output structure is non-zero. The event can be generated as the result of any command that presents media to the customer.

Event Param
LPWFSPTRMEDIARETRACTED lpMediaRetracted

typedef struct _wfs_ptr_media_retracted

{

WORD

wRetractResult;

USHORT

usBinNumber;

} WFSPTRMEDIARETRACTED, *LPWFSPTRMEDIARETRACTED;

wRetractResult
Specifies the result of the automatic retraction, as one of the following values:

Value
Meaning

WFS_PTR_AUTO_RETRACT_OK
The media was retracted successfully.

WFS_PTR_AUTO_RETRACT_MEDIAJAMMED
The media is jammed.

usBinNumber
Number of the retract bin the media was retracted to or zero if the media is retracted to the transport. This number has to be between one zero and the number of bins supported by this device. This value is zero if wRetractResult is WFS_PTR_AUTO_RETRACT_MEDIAJAMMED.

Comments
None.

Clarifications for Definition Syntax

Other notes:

…

· A form and its optional subform that has multiple XFSFIELDs with the same fieldname is invalid. The WFS_ERR_PTR_FORMINVALID error will be returned if specified in the input to a command

· A form that has multiple XFSSUBFORMs with the same subformname is invalid. The WFS_ERR_PTR_FORMINVALID error will be returned if specified in the input to a command

· A form and its optional subform that has multiple XFSFRAMEs with the same framename is invalid. The WFS_ERR_PTR_FORMINVALID error will be returned if specified in the input to a command

Clarifications for Form Definition

	XFSFORM
	
	formname*
	

	BEGIN
	
	
	

	
	[XFSFIELD
	fieldname*
	One field definition (as defined in the next section) for each field in the form. The fieldname within a form and its optional subforms must be unique.

	
	
BEGIN

 . . .

END]
	
	

	
	[XFSFRAME
	framename*
	One frame definition (as defined in the next section) for each frame in the form. The framename within a form and its optional subforms must be unique.

	
	
BEGIN

 . . .

END]
	
	

	
	[XFSSUBFORM
	subformname*
	One subform definition (as defined in the next section) for each subform in the form. The subformname within a form must be unique.

	
	
BEGIN

 . . .

END]
	
	

	END
	
	
	

Clarifications for Subform Definition

	XFSSUBFORM
	
	subformname*
	The subformname within a form must be unique.

	BEGIN
	
	
	

	(required)
	POSITION
	X,
	Horizontal position (relative to left side of form)

	
	[XFSFIELD
	fieldname*
	One field definition (as defined in the next section) for each field in the subform. The fieldname within a form and its optional subform must be unique.

	
	
BEGIN

 . . .

END]
	
	

	
	[XFSFRAME
	framename*
	One frame definition (as defined in the next section) for each frame in the subform. The framename within a form and its optional subform must be unique.

	
	
BEGIN

 . . .

END]
	
	

	END
	
	
	

Clarifications for Field Definition

	XFSFIELD
	
	fieldname*
	The fieldname within a form and its optional subforms must be unique.

Clarifications for C-Header File

/* values of WFSPTRRETRACTBINS.wRetractBin and

 WFSPTRBINTHRESHOLD.wRetractBin */

#define WFS_PTR_RETRACTNOTSUPP (2) // The use of this value is deprecated.
Identification Card Units

Class Name

IDC

Clarifications for WFS_INF_IDC_STATUS
Output Param
LPWFSIDCSTATUS lpStatus;

fwRetainBin
Specifies the state of the ID card unit retain bin as one of the following values:

Value
Meaning

WFS_IDC_RETAINBINOK
The retain bin of the ID card unit is not full in a good state.

Clarifications for WFS_INF_IDC_CAPABILITIES
Output Param
…
fwWriteTracks
Specifies the tracks that can be written by the ID card unit (as a combination of the flags specified in the description of fwReadTracks except WFS_IDC_TRACK_WM, WFS_IDC_FRONTIMAGE and WFS_IDC_BACKIMAGE).
Clarifications for WFS_INF_IDC_READ_TRACK
Description
...

For non-motorized Card Readers which read track data on card exit, the WFS_ERR_INVALID_DATA error code is returned when a call to WFS_CMD_IDC_READ_RAW_DATA is made to read both track data and chip data.

Clarifications for WFS_CMD_IDC_RETAIN_CARD

Events
In addition to the generic events defined in [Ref.1], the following events can be generated by this command:
Value
Meaning

WFS_EXEE_IDC_MEDIARETAINED
The card has been retained. This event is only fired if the command completes successfully (WFS_SUCCESS).

Clarifications for WFS_CMD_IDC_READ_RAW_DATA
Output Param
…
lpbData
Points to the data read from the track/chip, the value returned by the security module or a null-terminated string containing the full path and file name of the BMP image file.
By default lpsz… path or file names are single zero terminated and can not contain UNICODE characters.
Clarifications for WFS_CMD_IDC_CHIP_POWER
Description
This command handles the power actions that can be done on the chip.

For user chips, this command is only used after the chip has been contacted for the first time using the WFS_CMD_IDC_READ_RAW_DATA command. For contactless user chips, this command may be used to deactivate the contactless card communication.
…

Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

WFS_ERR_IDC_CHIPPOWERNOTSUPP
The specified action is not supported by the hardware device.

WFS_ERR_IDC_MEDIAJAM
The card is jammed (only applies to contact user chips). Operator intervention is required.

WFS_ERR_IDC_NOMEDIA
There is no card inside the device (may not apply for contactless user chips).
Clarifications for WFS_EXEE_IDC_POWER_SAVE_CHANGE
Comments
None. If another device class compounded with this device enters into a power saving mode, this device will automatically enter into the same power saving mode and this event will be generated.
Clarifications for C - Header File
/* Values of WFSIDCSTATUS.dwGuidLights [...]

 WFSIDCCAPS.dwGuidLights [...],

 WFSIDCSETGUIDLIGHT.wGuidLight */

#define WFS_IDC_GUIDANCE_NOT_AVAILABLE (0x00000000)

#define WFS_IDC_GUIDANCE_OFF (0x00000001)
/* The following value (WFS_IDC_GUIDANCE_ON) should NOT be used */

#define WFS_IDC_GUIDANCE_ON (0x00000002)

#define WFS_IDC_GUIDANCE_SLOW_FLASH (0x00000004)

#define WFS_IDC_GUIDANCE_MEDIUM_FLASH (0x00000008)

#define WFS_IDC_GUIDANCE_QUICK_FLASH (0x00000010)

#define WFS_IDC_GUIDANCE_CONTINUOUS (0x00000080)

#define WFS_IDC_GUIDANCE_RED (0x00000100)

#define WFS_IDC_GUIDANCE_GREEN (0x00000200)

#define WFS_IDC_GUIDANCE_YELLOW (0x00000400)

#define WFS_IDC_GUIDANCE_BLUE (0x00000800)

#define WFS_IDC_GUIDANCE_CYAN (0x00001000)

#define WFS_IDC_GUIDANCE_MAGENTA (0x00002000)

#define WFS_IDC_GUIDANCE_WHITE (0x00004000)
#define WFS_IDC_GUIDANCE_ENTRY (0x00100000)

#define WFS_IDC_GUIDANCE_EXIT (0x00200000)

Cash Dispensers

Class Name

CDM

Clarifications for Cash Dispensers
The following commands on the CIM interface may affect the CDM counts:

WFS_CMD_CIM_CASH_IN
WFS_CMD_CIM_CASH_IN_END
WFS_CMD_CIM_CASH_IN_ROLLBACK
WFS_CMD_CIM_RETRACT
WFS_CMD_CIM_SET_CASH_IN_UNIT_INFO
WFS_CMD_CIM_END_EXCHANGE
WFS_CMD_CIM_RESET
Clarifications for WFS_INF_CDM_STATUS
Output Param
…
fwDispenser
Supplies the state of the dispenser’s logical cash units as one of the following values:
Value
Meaning

WFS_CDM_DISPOK
All cash units present are in a good state.

WFS_CDM_DISPCUSTATE
The dispenser is operational, but One or more of the cash units is in a low, empty, or inoperative or manipulated condition. Items can still be dispensed from at least one of the cash units.

WFS_CDM_DISPCUSTOP
Due to a cash unit failure dispensing is impossible. The dispenser is operational, but No items can be dispensed because all of the cash units are in an empty, or inoperative or manipulated condition. This state may also occurs when a reject/retract cash unit is full or no reject/retract cash unit is present, or when an application lock is set on every cash unit.

WFS_CDM_DISPCUUNKNOWN
Due to a hardware error or other condition, the state of the cash units cannot be determined.
lppPositions
…
fwTransport
Supplies the state of the transport mechanism as one of the following values. The transport is defined as any area leading to or from the position:
Clarifications for WFS_INF_CDM_CAPABILITIES
Output Param
…
fwRetractAreas
Specifies the area to which items may be retracted. If the device does not have a retract capability this field will be WFS_CDM_RA_NOTSUPP. Otherwise this field will be set to a combination of the following flags:

Value
Meaning

WFS_CDM_RA_RETRACT
The items may be retracted to the retract cash unit.

WFS_CDM_RA_TRANSPORT
The items may be retracted to the transport.

WFS_CDM_RA_STACKER
The items may be retracted to the intermediate stacker.

WFS_CDM_RA_REJECT
The items may be retracted to the reject cash unit.

WFS_CDM_RA_ITEMCASSETTE
The items may be retracted to the item cassettes, i.e. cassettes that can be dispensed from.
WFS_CDM_RA_NOTSUPP
The CDM does not have the ability to retract.

fwRetractTransportActions
Specifies the actions which may be performed on items which have been retracted to the transport. If the device does not have a retract the capability to retract items to from the transport or move items from the transport, this value will be WFS_CDM_NOTSUPP. Otherwise this field will be a combination of the following flags:

Value
Meaning

WFS_CDM_PRESENT
The items may be presented.

WFS_CDM_RETRACT
The items may be retracted moved to a retract cash unit.

WFS_CDM_REJECT
The items may be rejected moved to a reject bin.

WFS_CDM_ITEMCASSETTE
The items may be retracted moved to the item cassettes, i.e. cassettes that can be dispensed from.

WFS_CDM_NOTSUPP
The CDM does not have the ability to retract from the transport.

fwRetractStackerActions
Specifies the actions which may be performed on items which have been retracted to the stacker. If the device does not have a retract the capability to retract from items to the stacker or move items from the stacker, this value will be WFS_CDM_NOTSUPP. Otherwise it will be a combination of the following flags:

Value
Meaning

WFS_CDM_PRESENT
The items may be presented.

WFS_CDM_RETRACT
The items may be retracted moved to a retract cash unit.

WFS_CDM_REJECT
The items may be rejected moved to a reject bin.

WFS_CDM_ITEMCASSETTE
The items may be retracted moved to the item cassettes, i.e. cassettes that can be dispensed from.

WFS_CDM_NOTSUPP
The CDM does not have the ability to retract from the stacker.

bSafedDoor
Specifies whether or not the WFS_CMD_CDM_OPEN_SAFE_DOOR command is supported.

Clarifications for WFS_INF_CDM_CASH_UNIT_INFO
Description
This command is used to obtain information regarding the status and contents of the cash units in the CDM.
…
Threshold Events

The threshold event WFS_USRE_CDM_CASHUNITTHRESHOLD can be triggered either by hardware sensors in the device or by the ulCount reaching the ulMinimum or ulMaximum value.

The application can check if the device has this capability by querying the bHardwareSensors field of the physical cash unit structure. If any of the physical cash units associated with the logical cash unit have this capability, then threshold events based on hardware sensors can be triggered.
…

Counts

Item counts are typically based on software counts and therefore may not represent the actual number of items in the cash unit. Persistent values are maintained through power failures, open sessions, close session and system resets. If a cash unit is shared between the CDM and CIM device class, then CDM operations will result in count changes in the CIM cash unit structure and vice versa. All counts are reported consistently on both interfaces at all times.

On cash units that dispense items, if ulCount (on logical and physical cash units) reaches zero it will not decrement further but will remain at zero. When ulCount reaches zero no further dispense or denominate operations will be possible using that cash unit, unless the Service Provider provides a configuration option to continue using cash units when ulCount reaches zero. The default setting for any such configuration parameter must be to stop using the cash unit when this value reaches zero. If the Service Provider is configured such that the cash unit can still be used when ulCount reaches zero then WFS_CDM_STATCUEMPTY should not be generated when ulCount reaches zero, rather it should be generated when all physical cash units associated with the logical cash unit are physically empty. On recyclers, the Service Provider should not be configured to keep using the cash unit when ulCount is zero if the value in ulCount is used by any part of the application, as it may not be accurate. However, if the Service Provider is configured to keep using the cash unit when ulCount reaches zero, then the number of notes in the cash unit can be determined relative to ulInitialCount using ulDispensedCount, ulRetractedCount and the CIM ulCashInCount, e.g. Number of Notes = ulInitialCount – ulDispensedCount + ulRetractedCount + CIM::ulCashInCount.
On cash units that dispense items, ulCount on logical cash units is decremented when items are in customer access or successfully rejected. Therefore, items which are dispensed from the cash unit then removed from the device for other reasons (such as manual jam clearance) may mean that ulCount on logical cash units no longer reflects the number of items in the cash unit. The count of items in the cash unit should therefore be determined from other counts, e.g., ulCount on physical cash units or Number of Notes = ulInitialCount – ulDispensedCount + ulRetractedCount + CIM::ulCashInCount (if applicable).
Output Param
…
ulCount
...

For all dispensing cash units (usType is WFS_CDM_TYPEBILLCASSETTE, WFS_CDM_TYPECOINCYLINDER, WFS_CDM_TYPECOINDISPENSER, WFS_CDM_TYPECOUPON, WFS_CDM_TYPEDOCUMENT or WFS_CDM_TYPERECYCLING), this value includes any items from the physical cash units not yet presented to the customer. This count is only decremented when the items are either successfully presented known to the be in customer access or successfully rejected.

ulRejectCount
The number of items from this cash unit which are in the reject bin, and which have not been accessible to a customer. This value may be unreliable, since the typical reason for dumping items to the reject cash unit is a suspected pick failure. For reject and retract cash units (usType is WFS_CDM_TYPEREJECTCASSETTE or WFS_CDM_TYPERETRACTCASSETTE) this parameter does not apply and will be reported as zero. This value is persistent.
ulRetractedCount
The number of items that have been accessible to a customer and retracted into all the physical cash units associated with this cash unit. This value is persistent.

bAppLock
This field does not apply to reject or retract cash units. If this value is TRUE items cannot be dispensed from the cash unit. If this value is TRUE and the application attempts to dispense from the cash unit a WFS_EXEE_CDM_CASHUNITERROR event will be generated and a WFS_ERR_CDM_CASHUNITERROR code will be returned. This value is persistent.
Clarifications for WFS_INF_CDM_MIX_TYPES

Description
This command is used to obtain a list of supported mix algorithms and available house mix tables.

Output Param
LPWFSCDMMIXTYPE *lppMixTypes;

usSubType
Contains a vendor-defined number that identifies the type of algorithm or table. Individual vendor-defined mix algorithms are defined above hexadecimal 7FFF. Mix algorithms which are provided by the Service Provider are in the range hexadecimal 8000 - 8999. Application defined mix algorithms start at hexadecimal 9000. All numbers below 8000 hexadecimal are reserved. If usMixType is WFS_CDM_MIXTABLE, this value will be zero. Predefined values are:

Value
Meaning

…

Clarifications for WFS_INF_CDM_PRESENT_STATUS
Description
This command is used to obtain the status of the most recent customer transaction from a specified output position.The items may have been dispensed and/or presented as a result of the WFS_CMD_CDM_PRESENT or A customer transaction starts with a WFS_CMD_CDM_DISPENSE command and completes when the items are presented to the customer, or the transaction is cancelled by calling a command such as WFS_CMD_CDM_REJECT. A customer transaction may include multiple WFS_CMD_CDM_DISPENSE commands if the capability fwMoveItems reports WFS_CDM_TOSTACKER. Commands during the customer transaction may cause this status to change.
Other commands which can dispense items such as WFS_CMD_CDM_TEST_CASH_UNITS do not update this status. This status is not updated as a result of any other command that can dispense/present items.
This value is persistent and is valid until the next time an attempt is made to present or dispense items to the customer transaction.
The denominations reported by this command may not accurately reflect the operation if the cash units have been re-configured (e.g. if the values associated with a cash unit are changed, or new cash units are configured).

Input Param
LPWORD lpfwPosition;

lpfwPosition
Pointer to the required output position the items were presented or dispensed to as one of the following values:

Value
Meaning

WFS_CDM_POSNULL
The items were presented according to the default configuration.

WFS_CDM_POSLEFT
The items were presented to the left output position.

WFS_CDM_POSRIGHT
The items were presented to the right output position.

WFS_CDM_POSCENTER
The items were presented to the center output position.

WFS_CDM_POSTOP
The items were presented to the top output position.

WFS_CDM_POSBOTTOM
The items were presented to the bottom output position.

WFS_CDM_POSFRONT
The items were presented to the front output position.
WFS_CDM_POSREAR
The items were presented to the rear output position.
Error Codes
Only the generic error codes defined in [Ref. 1] can be generated by this command. In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:
Value
Meaning

WFS_ERR_CDM_UNSUPPOSITION
The specified output position is not supported.

Clarifications for WFS_CMD_CDM_DENOMINATE
Input Param
usCount
The size of the lpulValues list. This usCount is the same as the usCount returned from the last WFS_INF_CDM_CASH_UNIT_INFO command or set by the last WFS_CMD_CDM_SET_CASH_UNIT_INFO or WFS_CMD_CDM_END_EXCHANGE commands. If this value is not required because a mix algorithm is used then the usCount can be set to zero.

If the application passes in an invalid usCount the Service Provider should return a WFS_ERR_INVALID_DATA return code.

Clarifications for WFS_CMD_CDM_DISPENSE
Description
...

If bPresent is set to TRUE and a shutter exists, then it will be implicitly controlled during the present operation, even if the bShutterControl capability is set to FALSE. The shutter will be closed when the user removes the items or the items are retracted.

Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:
Value
Meaning

….

WFS_ERR_CDM_SHUTTEROPEN
The Service Provider cannot dispense items with an open output shutter.

….

If the bPresent field of the WFSCDMDISPENSE structure is TRUE, the following error codes can also be returned:

….

WFS_ERR_CDM_SHUTTEROPEN
The Service Provider cannot dispense items with an open output shutter.

Events
In addition to the generic events defined in [Ref. 1], the following events can be generated as a result of this command:

Value
Meaning

…
WFS_EXEE_CDM_INCOMPLETEDISPENSE
It has not been possible to dispense the entire denomination but part of the requested denomination has been dispensed, whether is on the intermediate stacker or in customer access. The return error code will be WFS_ERR_CDM_NOTDISPENSABLE.
Clarifications for WFS_CMD_CDM_PRESENT
Description
This command will move items to the exit position for removal by the user. If a shutter exists, then it will be implicitly controlled during the present operation, even if the bShutterControl capability is set to FALSE. The shutter will be closed when the user removes the items or the items are retracted. If lpfwPosition points to WFS_CDM_POSNULL the position set in the WFS_CMD_CDM_DISPENSE command which caused these items to be dispensed will be used.
In the case where the shutter is unlocked but deliberately held shut, if the items could have been in customer access then a WFS_ERR_CDM_PRERRORITEMS error code will be returned.

When this command successfully completes the items are in customer access.

Clarifications for WFS_CMD_CDM_COUNT

Output Param
..

usPStatus
Supplies the status of the physical cash unit as defined by the usPStatus field of the WFSCDMPHCU structure. one of the following values:
Value
Meaning

WFS_CDM_STATCUOK
The cash unit is in a good state.

WFS_CDM_STATCUFULL
The cash unit is full.

WFS_CDM_STATCUHIGH
The cash unit is almost full (reached or exceeded the threshold defined by WFSCDMCASHUNIT.ulMaximum).

WFS_CDM_STATCULOW
The cash unit is almost empty.

WFS_CDM_STATCUEMPTY
The cash unit is empty.

WFS_CDM_STATCUINOP
The cash unit is inoperative.

WFS_CDM_STATCUMISSING
The cash unit is missing.

WFS_CDM_STATCUNOVAL
The values of the specified cash unit are not available.

WFS_CDM_STATCUNOREF
There is no reference value available for the notes in this cash unit.

WFS_CDM_STATCUMANIP
The cash unit has been inserted (including removal followed by a reinsertion) when the device was not in the exchange state. This cash unit cannot be dispensed from.
Clarifications for WFS_CMD_CDM_RETRACT
Description
This command will retract items which may have been in customer access from an output position or from internal areas within the CDM. Retracted items will be moved to either a retract cash unit, the reject cash unit, an item cash units, the transport or the intermediate stacker. After the items are retracted the shutter is closed automatically, even if the bShutterControl capability is set to FALSE.
If items are moved to a retract cash unit (i.e. a cash unit with usType WFS_CDM_TYPERETRACTCASSETTE), then the ulCount parameter of the retract cash unit must be incremented by 1 to specify the number of retracts. If items are moved to any other cash unit (e.g. a cash unit with usType WFS_CDM_TYPEREJECTCASSETTE) then the ulCount parameter of the cash unit must be incremented by the number of items that were thought to be present at the time the WFS_CMD_CDM_RETRACT command was issued or the number counted by the device during the retract. Note that reject bin counts are unreliable.
The bRetract field of the WFSCDMCAPS structure specifies whether or not this command is supported.

Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

WFS_ERR_CDM_CASHUNITERROR
The retract cash unit caused a problem. A WFS_EXEE_CDM_CASHUNITERROR event will be posted with the details.

WFS_ERR_CDM_NOITEMS
There were no items to retract.

WFS_ERR_CDM_EXCHANGEACTIVE
The CDM is in an exchange state.

WFS_ERR_CDM_SHUTTERNOTCLOSED
The shutter failed to close.

WFS_ERR_CDM_ITEMSTAKEN
Items were present at the output position at the start of the operation, but were removed before the operation was complete - some or all of the items were not retracted.

WFS_ERR_CDM_INVALIDRETRACTPOSITION
The usIndex is not supported.

WFS_ERR_CDM_NOTRETRACTAREA
The retract area specified in usRetractArea is not supported.

WFS_ERR_CDM_UNSUPPOSITION
The output position specified is not supported.

Clarifications for WFS_CMD_CDM_START_EXCHANGE

Description
...

While in an exchange state the CDM will process all WFS requests but exclude WFS[Async]Execute commands, except those listed below:

WFS_CMD_CDM_END_EXCHANGE

WFS_CMD_CDM_SET_MIX_TABLE
WFS_CMD_CDM_RESET

Clarifications for WFS_CMD_CDM_END_EXCHANGE

Description
…

If an error occurs during the execution of this command, the application must issue WFS_INF_CDM_CASH_UNIT_INFO to determine the cash unit information.
A WFS_EXEE_CDM_CASHUNITERROR event will be sent for any logical cash unit which cannot be successfully updated. If no cash units could be updated then a WFS_ERR_CDM_CASHUNITERROR code will be returned and WFS_EXEE_CDM_CASHUNITERROR events generated for every logical cash unit that could not be updated.

Even if this command does not return WFS_SUCCESS the exchange state has ended.

The values set by this command are persistent.
Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

WFS_ERR_CDM_INVALIDTELLERID
Invalid teller ID. This error will never be generated by a Self-Service CDM.

WFS_ERR_CDM_CASHUNITERROR
A cash unit problem occurred with a cash unit. A that meant no cash units could be updated. One or more WFS_EXEE_CDM_CASHUNITERROR events will be posted with the details.

Clarifications for WFS_CMD_CDM_CALIBRATE_CASH_UNIT

Input Param
LPWFSCDMCALIBRATE lpCalibrateIn;

typedef struct _wfs_cdm_calibrate

{

USHORT

usNumber;

USHORT

usNumOfBills;

LPWFSCDMITEMPOSITION

*lpPosition;

} WFSCDMCALIBRATE, *LPWFSCDMCALIBRATE;

..
lpPosition
Specifies where the dispensed items should be moved to. For a description of the WFSCDMITEMPOSITION structure see section WFS_CMD_CDM_RESET.
This parameter is a pointer to a pointer to WFSCDMITEMPOSITION structure.
Clarifications for WFS_CMD_CDM_RESET

Description
This command is used by the application to perform a hardware reset which will attempt to return the CDM device to a known good state. This command does not over-ride a lock obtained through WFS[Async]Lock on another application or service handle.

The device will attempt to move any items found anywhere within the device to the cash unit or output position specified in the lpResetIn parameter. This may not always be possible because of hardware problems.

If items are found inside the device the WFS_SRVE_CDM_MEDIADETECTED event will be generated and will inform the application where the items were actually moved to.

If an exchange state is active then this command will end the exchange state (even if this command does not complete successfully).

On a recycling device, this command is not accepted if a cash-in transaction is active and will return a WFS_ERR_DEV_NOT_READY error.

If items are moved to a retract cash unit (i.e. a cash unit with usType WFS_CDM_TYPERETRACTCASSETTE), then the ulCount parameter of the retract cash unit must be incremented by 1 to specify the number of operations that changed the count. If items are moved to any other cash unit (e.g. a cash unit with usType WFS_CDM_TYPEREJECTCASSETTE), then the ulCount parameter of the cash unit must be incremented either by the number of items that were present at the time the WFS_CMD_CDM_RESET command was issued or the number counted by the device during the WFS_CMD_CDM_RESET command. Note that reject bin counts are unreliable.

Input Param
If the application does not wish to specify a cash unit or position it can set lpResetIn to NULL. In this case the Service Provider will determine where to move any items found.
LPWFSCDMITEMPOSITION lpResetIn;
typedef struct _wfs_cdm_itemposition

{

USHORT

usNumber;

LPWFSCDMRETRACT

lpRetractArea;

WORD

fwOutputPosition;

} WFSCDMITEMPOSITION *LPWFSCDMITEMPOSITION;

usNumber
The usNumber of the cash unit to which items found inside the CDM are to be moved. If the items are to be moved to an output position this value is zero and the output position is defined by fwOutputPosition.
In the case of a single cash unit destination this value specifies the cash unit to be used for the storage of any items found, i.e. when items are to be moved to a reject or retract cash unit. In all other cases this value must be zero, i.e. when items are to be moved to an output position.
lpRetractArea
This field is only used if the cash unit specified by usNumber is a retract cash unit. In all other cases this field is set to NULL. For a description of this structure see the WFSCDMRETRACT structure defined in WFS_CMD_CDM_RETRACT.
This field is used if items are to be moved to a retract cash unit. If items are to be moved to a reject cash unit or to an output position then this field must be NULL.

typedef struct _wfs_cdm_retract

{

WORD

fwOutputPosition;

USHORT

usRetractArea;

USHORT

usIndex;

} WFSCDMRETRACT, *LPWFSCDMRETRACT;

fwOutputPosition
This value will be ignored.

usRetractArea
This value specifies the area to which the items are to be moved to. Possible values are:

Value
Meaning

WFS_CDM_RA_RETRACT
Items will be moved to a retract cash unit. In the case where several cash units of type WFS_CDM_TYPERETRACTCASSETTE exist the usNumber parameter will define which retract unit the items will be moved to.

usIndex
If usRetractArea is set to WFS_CDM_RA_RETRACT this field is the logical retract position inside the container into which the cash is to be retracted. This logical number starts with a value of one (1) for the first retract position and increments by one for each subsequent position. If the container contains several logical retract cash units (of type WFS_CDM_TYPERETRACTCASSETTE in command WFS_INF_CDM_CASH_UNIT_INFO), usIndex would be incremented from the first position of the first retract cash unit to the last position of the last retract cash unit defined in WFSCDMCASHINFO. The maximum value of usIndex is the sum of the ulMaximum of each retract cash unit. If usRetractArea is not set to WFS_CDM_RA_RETRACT the value of this field is ignored.

fwOutputPosition
The output position to which items are to be moved. If the usNumber is non-zero then this field will be ignored. The value is specified as one of the following values:

Value
Meaning

WFS_CDM_POSNULL
The default configuration.

WFS_CDM_POSLEFT
The left output position.

WFS_CDM_POSRIGHT
The right output position.

WFS_CDM_POSCENTER
The center output position.

WFS_CDM_POSTOP
The top output position.

WFS_CDM_POSBOTTOM
The bottom output position.

WFS_CDM_POSFRONT
The front output position.

WFS_CDM_POSREAR
The rear output position.

If the application does not wish to specify a cash unit or position it can set lpResetIn to NULL. In this case the Service Provider will determine where to move any items found.

Clarifications for WFS_CMD_CDM_TEST_CASH_UNITS
Events
In addition to the generic events defined in [Ref. 1], the following events can be generated by this command:

Value
Meaning

WFS_USRE_CDM_CASHUNITTHRESHOLD
A threshold condition has been reached in one of the cash units.

WFS_SRVE_CDM_CASHUNITINFOCHANGED
A cash unit was changed.

WFS_EXEE_CDM_CASHUNITERROR
A cash unit has failed the test or a cash unit was not testable.

WFS_SRVE_CDM_ITEMSTAKEN
The items presented have been removed by the user.

WFS_SRVE_CDM_CASHUNITINFOCHANGED
A cash unit was updated as a result of this command.

WFS_EXEE_CDM_NOTEERROR
An item detection error has occurred.

WFS_EXEE_CDM_INPUT_P6
ECB6 Level 2 and/or level 3 notes have been detected.
Clarifications for WFS_EXEE_CDM_INCOMPLETEDISPENSE
Description
This execute event is generated during WFS_CMD_CDM_DISPENSE when it has not been possible to dispense the entire denomination but part of the requested denomination is on the intermediate stacker or in customer access when not all of the items specified in a WFS_CMD_CDM_DISPENSE operation could be dispensed. Some of the items have been dispensed. If the device has no intermediate stacker then the items that were dispensed will be in customer access.

Event Param
LPWFSCDMDENOMINATION lpDenomination;

lpDenomination
The WFSCDMDENOMINATION structure is defined in the documentation of the command WFS_CMD_CDM_DENOMINATE. Note that in this case the values in this structure report the amount and number of each denomination that are in customer access or on the intermediate stacker. WFS_INF_CDM_PRESENT_STATUS can be used to determine whether the items are in customer accesshas actually been dispensed.
Comments
None.
Clarifications for WFS_CMD_CDM_POWER_SAVE_CONTROL
Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

WFS_ERR_CDM_EXCHANGEACTIVE
The CDM is in an exchange state.

Clarifications for WFS_CMD_CDM_PREPARE_DISPENSE
Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

WFS_ERR_CDM_EXCHANGEACTIVE
The CDM is in an exchange state.

Clarifications for WFS_EXEE_CDM_POWER_SAVE_CHANGE
Comments
None. If another device class compounded with this device enters into a power saving mode, this device will automatically enter into the same power saving mode and this event will be generated.
Clarifications for C - Header File
#define WFS_CDM_GUIDANCE_NOT_AVAILABLE (0x00000000)

#define WFS_CDM_GUIDANCE_OFF (0x00000001)

#define WFS_CDM_GUIDANCE_SLOW_FLASH (0x00000004)

#define WFS_CDM_GUIDANCE_MEDIUM_FLASH (0x00000008)

#define WFS_CDM_GUIDANCE_QUICK_FLASH (0x00000010)

#define WFS_CDM_GUIDANCE_CONTINUOUS (0x00000080)

#define WFS_CDM_GUIDANCE_RED (0x00000100)

#define WFS_CDM_GUIDANCE_GREEN (0x00000200)

#define WFS_CDM_GUIDANCE_YELLOW (0x00000400)

#define WFS_CDM_GUIDANCE_BLUE (0x00000800)

#define WFS_CDM_GUIDANCE_CYAN (0x00001000)

#define WFS_CDM_GUIDANCE_MAGENTA (0x00002000)

#define WFS_CDM_GUIDANCE_WHITE (0x00004000)
#define WFS_CDM_GUIDANCE_ENTRY (0x00100000)
#define WFS_CDM_GUIDANCE_EXIT (0x00200000)

/* Values of WFSCDMSTATUS.dwGuidLights [...]

 WFSCDMCAPS.dwGuidLights [...] */

#define WFS_CDM_GUIDANCE_NOT_AVAILABLE (0x0000)

Personal Identification Number Keypads (PIN Pads)

Class Name

PIN
Clarifications for Section 3. References

Added reference:

	36. PCI PIN Transaction Security (PTS) Point of Interaction (POI) version 6.1

Clarifications for WFS_INF_PIN_CAPABILITIES

Output Param
…

fwKeyCheckModes
Specifies the key check modes that are supported to check the correctness of an imported key value. The modes available for each key may depend on security requirements of the algorithm (for example, see [Ref. 36]). The algorithm (i.e. DES, 3DES, AES, SM4) and use is determined by the algorithm of the key being checked and security requirements. If the key size is larger than the algorithm block size, then only the first block will be used. It can be a combination of the following flags:

Value
Meaning

WFS_PIN_KCVSELF
The key check value (KCV) is created by an encryption of the key with itself. For a double length key the KCV is generated using 3DES encryption using the first half of the key as the source data for the encryption.
WFS_PIN_KCVZERO
The key check value (KCV) is created by encrypting a zero value with the key.
Clarifications for WFS_CMD_PIN_CRYPT

Input Param
…

wMode
If MACing then this parameter will be ignored, otherwise this parameter sSpecifies the modewhether to encrypt or decrypt, values are one of the following:

Value
Meaning

WFS_PIN_MODEENCRYPT
Encrypt with key.

WFS_PIN_MODEDECRYPT
Decrypt with key.
WFS_PIN_MODERANDOM
An 8 byte random value shall be returned (in this case all the other input parameters are ignored).
Clarifications for WFS_CMD_PIN_GET_DATA
Description
This function is used to return keystrokes entered by the user. It will automatically set the PIN pad to echo characters on the display if there is a display. For each keystroke an execute notification event WFS_EXEE_PIN_KEY is sent in order to allow an application to perform the appropriate display action (i.e. when the PIN pad has no integrated display).

The WFS_EXEE_PIN_ENTERDATA event will be generated when the PIN pad is ready for the user to start entering data.

When the maximum number of digits is entered and the flag bAutoEnd is true, or a terminate key is pressed after the minimum number of digits is entered, the command completes. If the <Cancel> key is a terminator key and is pressed, the command will complete successfully even if the minimum number of digits has not been entered.

Terminating FDKs can have the functionality of <Enter> (terminates only if minimum length has been reached) or <Cancel> (can terminate before minimum length is reached). The configuration of this functionality is vendor specific.

Clarifications for WFS_CMD_PIN_IMPORT_KEY
Input Param
LPWFSPINIMPORT lpImport;

fwUse
Specifies the type of access for which the key can be used as a combination of the following flags:

Value
Meaning

WFS_PIN_USEFUNCTION
Key can be used for PIN functions (PIN block creation and local PIN check).

Clarifications for WFS_CMD_PIN_LOCAL_DES

Input Param
…
bPadding
Specifies the padding character for the validation data. If the validation data is less than 16 characters long then it will be padded with this character. If bPadding is in the range 0x00 to 0x0f 0x0F, padding is applied after the validation data has been compressed. If the bPadding character is in the range ‘0’ to ‘9’, ‘a’ to ‘f’, or ‘A’ to ‘F’, padding is applied before the validation data is compressed.

Clarifications for WFS_CMD_PIN_CREATE_OFFSET

Input Param
…
bPadding
Specifies the padding character for validation data. If bPadding is in the range 0x00 to 0x0f 0x0F, padding is applied after the validation data has been compressed. If the bPadding character is in the range ‘0’ to ‘9’, ‘a’ to ‘f’, or ‘A’ to ‘F’, padding is applied before the validation data is compressed.

Clarifications for WFS_CMD_PIN_GET_PINBLOCK

Input Param
…
lpsCustomerData
The customer data should be an ASCII string. Used for ANSI, ISO-0 and, ISO-1 and ISO-3 algorithm to build the formatted PIN. For ANSI and, ISO-0 and ISO-3 the PAN (Primary Account Number, without the check number) is supplied, for ISO-1 a ten digit transaction field is required. If not used a NULL is required.
bPadding
Specifies the padding character. The valid range is 0x00 to 0x0F. Only the least significant nibble is used. This field is ignored for PIN block formats with fixed, sequential or random padding.
Clarifications for WFS_CMD_PIN_INITIALIZATION

Description
...

Where initial keys are not available immediately when this command is issued (i.e. when operator intervention is required), the Service Provider returns WFS_ERR_PIN_ACCESS_DENIED and the application must await the WFS_SRVE_PIN_INITIALIZED event.

...

This function resets all certificate data and authentication public/private keys back to their initial states at the time of production (except for those public keys imported under the RSA Signature based remote key loading scheme when public key deletion authentication is required). Key-pairs created with WFS_CMD_PIN_GENERATE_RSA_KEY_PAIR are deleted. Any keys installed during production, which have been permanently replaced, will not be reset. Any Verification certificates that may have been loaded must be reloaded. The Certificate state will remain the same, but the WFS_CMD_PIN_LOAD_CERTIFICATE or WFS_CMD_PIN_REPLACE_CERTIFICATE commands must be called again.
Clarifications for WFS_CMD_CDM_RESET

Description
Sends a service reset to the Service Provider. This command may trigger a self-test, for example, initializing memory, checking device state, etc. For the details of any self-test performed, vendor specific documentation may have to be consulted.
Clarifications for WFS_CMD_PIN_SECURE_MSG_SEND

Input Param
…
wProtocol
Specifies the protocol the message belongs to. Specified as one of the following flags:

Value
Meaning

WFS_PIN_PROTISOAS
ISO 8583 protocol for the authorization system.

WFS_PIN_PROTISOLZ
ISO 8583 protocol for the German "Ladezentrale".

WFS_PIN_PROTISOPS
ISO 8583 protocol for the personalization system.

WFS_PIN_PROTCHIPZKA
ZKA chip protocol.

WFS_PIN_PROTRAWDATA
raw data protocol.

WFS_PIN_PROTPBM
PBM protocol (see [Ref. 8] –[Ref. 13])

WFS_PIN_PROTHSMLDI
HSM LDI protocol.

WFS_PIN_PROTGENAS
Generic PAC/MAC for non-ISO8583 message formats.

WFS_PIN_PROTCHIPPINCHG
ZKA chip protocol for changing the PIN on a GeldKarte.

WFS_PIN_PROTPINCMP
Protocol for comparing PIN numbers entered in the PinPad during a Pin Change transaction.

WFS_PIN_PROTISOPINCHG
ISO8583 authorization system protocol for changing the PIN on a GeldKarte.

Clarifications for WFS_CMD_PIN_SECURE_MSG_RECEIVE

Input Param
…
wProtocol
Specifies the protocol the message belongs to. Specified as one of the following flags:

Value
Meaning

WFS_PIN_PROTISOAS
ISO 8583 protocol for the authorization system.

WFS_PIN_PROTISOLZ
ISO 8583 protocol for the German "Ladezentrale".

WFS_PIN_PROTISOPS
ISO 8583 protocol for the personalization system.

WFS_PIN_PROTCHIPZKA
ZKA chip protocol.

WFS_PIN_PROTRAWDATA
Raw data protocol.

WFS_PIN_PROTPBM
PBM protocol (see [Ref. 8] – [Ref. 13]).

WFS_PIN_PROTGENAS
Generic PAC/MAC for non-ISO8583 message formats.

WFS_PIN_PROTCHIPPINCHG
ZKA chip protocol for changing the PIN on a GeldKarte.

WFS_PIN_PROTPINCMP
Protocol for comparing PIN numbers entered in the PinPad during a Pin Change transaction.

WFS_PIN_PROTISOPINCHG
ISO8583 authorization system protocol for changing the PIN on a GeldKarte.

Clarifications for WFS_CMD_PIN_ENC_IO

Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

WFS_ERR_PIN_PROTOCOLNOTSUPP
The specified protocol is not supported by the Service Provider. For wProtocol= WFS_PIN_ENC_PROT_GIECB.

WFS_ERR_INVALIDDATA
The input data is not valid for the specified protocol, e.g. inconsistent TLV encoding.

WFS_ERR_PIN_RANDOMINVALID
The encrypted random number in the input data does not decrypt to the one previously provided by the EPP.

WFS_ERR_PIN_SIGNATUREINVALID
The signature in the input data is invalid.

WFS_ERR_PIN_SNSCDINVALID
The SCD serial number in the input data is invalid.

WFS_ERR_PIN_HSMSTATEINVALID
The HSM is not in a correct state to handle this command.

WFS_ERR_PIN_NOKEYRAM
There is no space left in the key RAM for a key of the specified type.

WFS_ERR_PIN_KEYINVALID
The key value is invalid.

WFS_ERR_PIN_KEY_GENERATION_ERROR
The EPP is unable to generate a key pair.

Clarifications for WFS_CMD_PIN_SET_PINBLOCK_DATA

Description
This function should be used for devices which need to know the data for the PIN block before the PIN is entered by the user. WFS_CMD_PIN_GET_PIN and WFS_CMD_PIN_GET_PINBLOCK should be called after this command. For all other devices WFS_ERR_UNSUPP_COMMAND will be returned here.

If this command is required and it is not called, the WFS_CMD_PIN_GET_PIN command will fail with the generic error WFS_ERR_INVALID_DATA WFS_ERR_SEQUENCE_ERROR.
…
Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

WFS_ERR_PIN_KEYNOTFOUND
The specified key was not found.

WFS_ERR_PIN_ACCESSDENIED
The encryption module is either not initialized or not ready for any vendor specific reason.

WFS_ERR_PIN_KEYNOVALUE
The specified key is not loaded.

WFS_ERR_PIN_USEVIOLATION
The specified use is not supported by this key.

WFS_ERR_PIN_FORMATNOTSUPP
The specified format is not supported.
WFS_ERR_PIN_INVALIDKEYLENGTH
The length of lpsKeyEncKey or lpsKey is not supported by this key or the length of an encryption key is not compatible with the encryption operation required.

Clarifications for WFS_CMD_PIN_SET_LOGICAL_HSM

Description
This command allows an application select the logical HSM that should be active. If the device does not support multiple logical HSMs this command returns WFS_ERR_UNSUPP_COMMAND. The WFS_INF_PIN_QUERY_LOGICAL_HSM_DETAIL command can be called to determine the current active logical HSM.
Input Param
…
wHSMSerialNumber
Specifies the serial number of the HSM that should be set as the active HSM. The value passed in this field corresponds to the wHSMSerialNumber field reported in the WFS_INF_PIN_QUERY_LOGICAL_HSM_DETAIL command output structure (and hence corresponds to the CB tag in the HSM TDATA). The wHSMSerialNumber value is encoded as a standard binary value (i.e. it is not BCD).

Clarifications for WFS_CMD_PIN_IMPORT_RSA_SIGNED_DES_KEY

Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

WFS_ERR_PIN_KEYNOTFOUND
The specified key encryption key was not found.

WFS_ERR_PIN_ACCESSDENIED
The encryption module is either not initialized or not ready for any vendor specific reason.

WFS_ERR_PIN_DUPLICATEKEY
A key exists with that name and cannot be overwritten.

WFS_ERR_PIN_KEYNOTFOUND
One of the keys specified were not found.

WFS_ERR_PIN_KEYNOVALUE
The specified key encryption key is not loaded.

WFS_ERR_PIN_USEVIOLATION
The specified use is not supported by this key.

WFS_ERR_PIN_INVALIDKEYLENGTH
The length of lpxValue is not supported.

WFS_ERR_PIN_NOKEYRAM
There is no space left in the key RAM for a key of the specified type.

WFS_ERR_PIN_SIG_NOT_SUPP
The Service Provider does not support the Signature Algorithm requested. The key was discarded.

WFS_ERR_PIN_SIGNATUREINVALID
The signature in the input data is invalid. The key is not stored in the PIN.

WFS_ERR_PIN_RANDOMINVALID
The encrypted random number in the input data does not match the one previously provided by the EPP. The key is not stored in the PIN.

Clarifications for WFS_CMD_PIN_IMPORT_RSA_ENCYPHERED_PKCS7_KEY

Output Param
…

dwRSAKeyCheckMode
Defines algorithm/method used to generate the public key check value/thumb print. The check value can be used to verify that the public key has been imported correctlyDefines the algorithm used to generate the signature contained in the message (lpxRSAData) sent to the host (see section 8.2.2 step 2c). It can be one of the following flags:
Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

WFS_ERR_PIN_ACCESSDENIED
The encryption module is either not initialized or not ready for any vendor specific reason.

WFS_ERR_PIN_FORMATINVALID
The format of the message is invalid.

WFS_ERR_PIN_DUPLICATEKEY
A key exists with that name and cannot be overwritten.

WFS_ERR_PIN_INVALIDKEYLENGTH
The length of lpxValue is not supported.

WFS_ERR_PIN_INVALIDID
The ID passed was not valid.

WFS_ERR_PIN_NOKEYRAM
There is no space left in the key RAM for a key of the specified type.

WFS_ERR_PIN_FORMATINVALID
The format of the message is invalid.

WFS_ERR_PIN_USEVIOLATION
The specified use conflicts with a previously for the same key specified one.

Clarifications for WFS_CMD_PIN_EMV_IMPORT_PUBLIC_KEY
Input Param
LPWFSPINEMVIMPORTPUBLICKEY lpEMVImportPublicKey;

lpxImportData
...
If wImportScheme is WFS_PIN_EMV_IMPORT_ISSUER then lpxImportData contains the EMV public key certificate. Within the following descriptions tags are documented to indicate the source of the data, but they are not sent down to the Service Provider. The data consists of the concatenation of: the key exponent length (1 byte), the key exponent value (variable length – EMV Tag value: ‘9F32’), the EMV certificate length (1 byte), the EMV certificate value (variable length – EMV Tag value: ‘90’), the remainder length (1 byte). The remainder value (variable length – EMV Tag value: ‘92’), the PAN length (1 byte) and the PAN value (variable length – EMV Tag value: ‘5A’). The Service Provider will compare the leftmost three to eight hex digits (where each byte consists of two hex digits) of the PAN to the Issuer Identification Number retrieved from the certificate. For more explanations, the reader can refer to EMVco, Book2 – Security & Key Management Version 4.0, Table 4 (See [Ref. 4] under the reference section for this document). lpsSigKey defines the previously loaded key used to verify the signature.

Clarifications for WFS_CMD_PIN_LOAD_CERTIFICATE

Description
This command is used to load a host certificate or to load a new encryptor certificate from a Certificate Authority to make remote key loading possible. This command can be called only once if there are no plans for a new CA to take over the duties. If a new CA does take over the duties, then this command should be called after the WFS_CMD_PIN_REPLACE_CERTIFICATE command. The type of certificate (Primary or Secondary) to be loaded will be embedded within the actual certificate structure.

Clarifications for WFS_EXEE_PIN_POWER_SAVE_CHANGE
Comments
None. If another device class compounded with this device enters into a power saving mode, this device will automatically enter into the same power saving mode and this event will be generated.
Clarifications for C-Header File

Clarifications for C - Header File
..

/* Values of WFSPINSTATUS.dwGuidLights [...]

 WFSPINCAPS.dwGuidLights [...]

*/

#define WFS_PIN_GUIDANCE_NOT_AVAILABLE (0x00000000)

#define WFS_PIN_GUIDANCE_OFF (0x00000001)
/* The following value (WFS_PIN_GUIDANCE_ON) should NOT be used */

#define WFS_PIN_GUIDANCE_ON (0x00000002)
#define WFS_PIN_GUIDANCE_SLOW_FLASH (0x00000004)

#define WFS_PIN_GUIDANCE_MEDIUM_FLASH (0x00000008)

#define WFS_PIN_GUIDANCE_QUICK_FLASH (0x00000010)

#define WFS_PIN_GUIDANCE_CONTINUOUS (0x00000080)

#define WFS_PIN_GUIDANCE_RED (0x00000100)
#define WFS_PIN_GUIDANCE_GREEN (0x00000200)

#define WFS_PIN_GUIDANCE_YELLOW (0x00000400)

#define WFS_PIN_GUIDANCE_BLUE (0x00000800)

#define WFS_PIN_GUIDANCE_CYAN (0x00001000)

#define WFS_PIN_GUIDANCE_MAGENTA (0x00002000)

#define WFS_PIN_GUIDANCE_WHITE (0x00004000)
#define WFS_PIN_GUIDANCE_ENTRY (0x00100000)

#define WFS_PIN_GUIDANCE_EXIT (0x00200000)

/* XFS PIN Errors */

#define WFS_ERR_PIN_INVALIDHSM (-(PIN_SERVICE_OFFSET + 41))

Clarifications for Remote Key Exchange

Clarifications for Replace Certificate

Clarifications for Luxemburg Protocol
Comments
Luxembourg encryption commands defined in the following paragraphs will return the generic error PROT_LUX_ERR_INVALID_DATA when the input data is invalid.
Note that since the introduction of the error codes for the Luxemburg Protocol, they have been redefined in the header file as positive values. This is to correct the original oversight of being defined as negative values which cannot be meaningfully returned in the WORD wResult output parameter. They have therefore been redefined as positive values in such a way that existing and future implementations which type cast them to an unsigned type will not be impacted.

Clarifications for Luxemburg-specific Header File
..

#define PROT_LUX_SUCCESS (0)

#define PROT_LUX_ERR_INVALID_CMD (USHRT_MAX-(PROT_LUX_RESULT_OFFSET + 1))

#define PROT_LUX_ERR_INVALID_DATA (USHRT_MAX-(PROT_LUX_RESULT_OFFSET + 21))

#define PROT_LUX_ERR_INVALID_KEY (USHRT_MAX-(PROT_LUX_RESULT_OFFSET + 32))

/* values of PROTLUXLOADAPPKEYOUT.wResult */

/* values of PROTLUXCHECKMACOUT.wResult */

#define PROT_LUX_ERR_VERIFICATION_FAILED (USHRT_MAX -(PROT_LUX_RESULT_OFFSET + 43))

/* values of PROTLUXPINBLOCKOUT.wResult */

#define PROT_LUX_ERR_PIN_FORMAT_LENGTH (USHRT_MAX -(PROT_LUX_RESULT_OFFSET + 54))

Check Reader/Scanner

Class Name

CHK
Clarifications for WFS_EXEE_CHK_POWER_SAVE_CHANGE
Comments
None. If another device class compounded with this device enters into a power saving mode, this device will automatically enter into the same power saving mode and this event will be generated.
Depository Unit

Class Name

DEP

Clarifications for WFS_CMD_DEP_ENTRY
Description
This command starts the entry of an envelope and attempts to deposits it into the deposit container.
The WFS_EXEE_DEP_INSERTDEPOSIT event will be generated when the device is ready to accept the deposit.

A deposit is considered to be successful if an envelope is inserted and the shutter closes such that the customer no longer has access to it. This includes cases where the deposited envelope reaches the deposit container, becomes jammed before reaching the container, or cannot be returned to the customer.

If a successful deposit takes place, then this command will always complete with WFS_SUCCESS, and any errors detected during the operation will be returned by the WFS_EXEE_DEP_DEPOSITERROR event.

If a successful deposit causes the deposit bin to reach a high or full threshold, a WFS_USRE_DEP_DEPTHRESHOLD event will be sent.

A deposit is considered to be unsuccessful if an envelope is inserted, an error occurs, and the customer has the ability to access it. This includes cases where an envelope is returned to the user, or cases where it becomes jammed but the customer is still able to access it.

If an unsuccessful deposit takes place, then the command will always complete with an appropriate error code, and any errors detected during the operation will be returned by the WFS_EXEE_DEP_DEPOSITERROR event.

If the envelope is entered and then returned to the exit slot for removal by the customer, if the deposit device is capable of this operation (either hardware capability or hardware problems such as a jam may prohibit the envelope from being returned) a WFS_SRVE_DEP_ENVTAKEN will be sent when it is removed.

For example, if the envelope entered has an incorrect size and the deposit was unsuccessful not completed, the envelope is returned to the exit slot for removal by the customer, if the deposit device is capable of this operation (either hardware capability or hardware problems such as a jam may prohibit the envelope from being returned). A WFS_SRVE_DEP_ENVTAKEN is sent when the envelope is removed. If the envelope entered has an incorrect size but the deposit was completed, WFS_SUCCESS is returned and a WFS_EXEE_DEP_DEPOSITERROR event is sent reporting a WFS_ERR_DEP_ENVSIZE value. If the envelope is returned to the customer for removal, the command will complete with WFS_ERR_DEP_ENVSIZE. A WFS_SRVE_DEP_ENVTAKEN is sent when the envelope is removed. But if returning the envelope is not possible and the customer cannot access the envelope, the command will complete with WFS_SUCCESS and a WFS_EXEE_DEP_DEPOSITERROR event is sent reporting a WFS_ERR_DEP_ENVSIZE.
If a deposit takes place then this command will report a successful operation and any errors detected during the operation will be returned by the WFS_EXEE_DEP_DEPOSITERROR event. If the successful deposit causes the deposit bin to reach a high or full threshold, a WFS_USRE_DEP_DEPTHRESHOLD event will be sent.

The WFS_EXEE_DEP_INPUTDEPOSIT event will be generated when the device is ready to accept the deposit.

Clarifications for WFS_CMD_DEP_RETRACT
Events
In addition to the generic events defined in [Ref. 1], the following events can be generated by this command:

Value
Meaning

….

WFS_SRVE_DEP_ENVTAKEN
The envelope has been taken by the user.

Clarifications for WFS_EXEE_DEP_POWER_SAVE_CHANGE
Comments
None. If another device class compounded with this device enters into a power saving mode, this device will automatically enter into the same power saving mode and this event will be generated.
Text Terminal Unit

Class Name

TTU
Clarifications for Definition Syntax
Other notes:

· In the form definition file, where characters are expressed using standard C hexadecimal escape sequences, the high order byte is defined first. For example, “\x0041” would represent the character 'A'. This is independent of the encoding format of the form definition file.

Clarifications for WFS_CMD_TTU_SET_LED

Input Param
…

If a LED flash state is not supported no error will be generated, instead the TTU Service Provider will use the LED flash state closest to the one requested.

Clarifications for WFS_CMD_TTU_POWER_SAVE_CONTROL

Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

WFS_ERR_TTU_POWERSAVETOOSHORT
The power saving mode has not been activated because the device is not able to resume from the power saving mode within the specified usMaxPowerSaveRecoveryTime value.

WFS_ERR_TTU_POWERSAVEMEDIAPRESENT
The power saving mode has not been activated because media is present inside the device.

Clarifications for WFS_EXEE_TTU_POWER_SAVE_CHANGE
Comments
None. If another device class compounded with this device enters into a power saving mode, this device will automatically enter into the same power saving mode and this event will be generated.
Sensors and Indicators Units

Class Name

SIU
Clarifications for Enhanced Audio Controller Overview
Auto Mode

In auto mode, when a consumer activates the a Privacy Device, the audio is automatically directed to the that Privacy Device and the audio is no longer sent to the speakers. When the Privacy Device is deactivated, the audio is redirected to the speakers. If more than one Privacy Device has been activated, audio is not redirected to the speakers until all Privacy Devices have been deactivated. The following state diagram completely describes the behavior of the device in auto mode.

Semi-Auto Mode

The dashed-line transitions are caused by application calls to WFS_CMD_SIU_SET_PORTS or WFS_CMD_SIU_SET_AUXILIARY for the WFS_SIU_ENHANCEDAUDIOCONTROL auxiliary with values of WFS_SIU_PRIVATEAUDIO_SEMI_AUTO or WFS_SIU_PUBLICAUDIO_SEMI_AUTO.
Clarifications for WFS_INF_SIU_STATUS
Output Param
…
fwAuxiliaries [WFS_SIU_ENHANCEDAUDIOCONTROL]
Specifies the state of the Enhanced Audio Controller. The Enhanced Audio Controller controls how private and public audio are broadcast when the headset is inserted into/removed from the audio jack and when the handset is off-hook/on-hook. In the following, Privacy Device is used to refer to either the headset or handset. The Enhanced Audio Controller state is specified as one of the following flags:
Value
Meaning

WFS_SIU_PRIVATEAUDIO_AUTO
The Enhanced Audio Controller is in auto mode and is in the private state (i.e. audio will be played only through a connected Privacy Device). In private mode, no audio is transmitted through the speakers. When a Privacy Device is deactivated (headset disconnected/handset on-hook), the device will go to the public state. Where there is more than one Privacy Device, the device will go to the public state only when all Privacy Devices have been deactivated.
Clarifications for WFS_CMD_SIU_SET_GUIDLIGHT
Input Param
LPWFSSIUSETGUIDLIGHT lpSetGuidLight;
typedef struct _wfs_siu_set_guidlight

{

WORD

wGuidLight;

WORD

fwCommand;

} WFSSIUSETGUIDLIGHT, *LPWFSSIUSETGUIDLIGHT;

wGuidLights
Specifies the index of the guidance light indicator to set as one of the following values:

Clarifications for WFS_EXEE_SIU_POWER_SAVE_CHANGE
Comments
None. If another device class compounded with this device enters into a power saving mode, this device will automatically enter into the same power saving mode and this event will be generated.
Vendor Dependent Mode

Class Name

VDM
Clarifications for WFS_CMD_VDM_ENTER_MODE_ACK
Description
This command is issued by a registered application as an acknowledgement to the WFS_SRVE_VDM_ENTER_MODE_REQ event and it indicates that the application is ready for the system to enter Vendor Dependent Mode. All registered applications (including the application that issued the request to enter Vendor Dependent Mode) must respond before Vendor Dependent Mode will be entered. Completion of this command is immediate.
Note: Applications must be prepared to allow the Vendor Dependent Application to display on the active interface. This means that applications should no longer try to be the foreground or topmost window to ensure that the Vendor Dependent Application is visible.

Clarifications for WFS_SRVE_VDM_INTERFACE_ CHANGED

Description
This service event is used to indicate that the required interface has changed. This can be as a result of a WFS_CMD_VDM_SET_ACTIVE_INTERFACE command, or when the active interface is changed through vendor dependent means while in VDM. The wActiveInterface field of the WFSVDMACTIVEINTERFACE structure indicates which interface has been selected.
Note: Applications must be prepared to allow the Vendor Dependent Application to display on the active interface. This means that applications should no longer try to be the foreground or topmost window to ensure that the Vendor Dependent Application is visible.

Cameras

Class Name

CAM
Clarifications for WFS_INF_CAM_STATUS

Output Param
..

fwMedia […]
Specifies the state of the recording media of the cameras. A number of indexes are defined below. The maximum fwMedia index is WFS_CAM_CAMERAS_MAX. For a device which stores pictures on a hard disk drive or other general-purpose storage, the value of the fwMedia field should be WFS_CAM_MEDIANOTSUPP.
Alarms

Class Name

ALM
No clarifications available.
Card Embossing Unit
Class Name

CEU
Clarifications for WFS_CMD_CEU_EMBOSS_CARD
Events
In addition to the generic events defined in [Ref. 1], the following events can be generated by this command:

Value
Meaning

WFS_SRVE_CEU_INPUTBINTHRESHOLD
Input bin is nearly empty.

WFS_SRVE_CEU_OUTPUTBINTHRESHOLD
Output bin is nearly full.

WFS_SRVE_CEU_RETAINBINTHRESHOLD
Retain bin is nearly full.

WFS_EXEE_CEU_EMBOSS_FAILURE
A card embossing failure has occurred.

WFS_EXEE_CEU_FIELDERROR
A fatal error occurred while processing a field.

WFS_EXEE_CEU_FIELDWARNING
A non-fatal error occurred while processing a field.

WFS_EXEESRVE_CEU_MEDIAREMOVED
This event is generated when a card is removed before completion of a write operation.

Clarifications for WFS_EXEESRVE_CEU_MEDIAREMOVED

The name of the event was changed from an EXECUTE event to a SERVICE event.

Clarifications for WFS_EXEE_CEU_POWER_SAVE_CHANGE
Comments
None. If another device class compounded with this device enters into a power saving mode, this device will automatically enter into the same power saving mode and this event will be generated.
Cash In Module

Class Name

CIM

Clarifications for Cash-In Module
The following commands on the CDM interface may affect the CIM counts:

WFS_CMD_CDM_DISPENSE

WFS_CMD_CDM_PRESENT

WFS_CMD_CDM_RETRACT

WFS_CMD_CDM_COUNT

WFS_CMD_CDM_REJECT

WFS_CMD_CDM_SET_CASH_UNIT_INFO

WFS_CMD_CDM_END_EXCHANGE

WFS_CMD_CDM_CALIBRATE_CASH_UNIT

WFS_CMD_CDM_RESET

WFS_CMD_CDM_TEST_CASH_UNITS
Clarifications for WFS_INF_CIM_STATUS
Output Param
…
fwAcceptor
Supplies the state of the acceptor cash units as one of the following values:

Value
Meaning

WFS_CIM_ACCOK
All cash units present are in a good state.

WFS_CIM_ACCCUSTATE
One of the cash units present is in an abnormal state. The acceptor is operational, but One or more of the cash units is in a high, full, or inoperative or manipulated condition. Items can still be accepted into at least one of the cash units.

WFS_CIM_ACCCUSTOP
Due to a cash unit failure accepting is impossible. The acceptor is operational, but No items can be accepted because all of the cash units are in a full, or inoperative or manipulated condition.
This state may also occurs when a retract cash unit is full or no retract cash unit is present, or when an application lock is set on every cash unit.

WFS_CIM_ACCCUUNKNOWN
Due to a hardware error or other condition, the state of the cash units cannot be determined.
lppPositions
…
fwTransport
Supplies the state of the transport mechanism as one of the following values. The transport is defined as any area leading to or from the position:
Clarifications for WFS_INF_CIM_CAPABILITIES
Output Param
…
fwExchangeType
Specifies the type of cash unit exchange operations supported by the CIM. Values are a combination of the following flags:

Value
Meaning

WFS_CIM_EXBYHAND
The CIM supports manual replenishment either by emptying the cash unit by hand or by replacing the cash unit.

WFS_CIM_EXTOCASSETTES
The CIM supports moving items from the bill cash units to the replenishment cash unit to the bill cash units.

WFS_CIM_CLEARRECYCLER
The CIM supports the emptying of recycle cash units.

WFS_CIM_DEPOSITINTO
The CIM supports moving items from the deposit entrance to the bill cash units.
fwRetractAreas
Specifies the areas to which items may be retracted. If the device does not have a retract capability this field will be WFS_CIM_RA_NOTSUPP. Otherwise this field will be set to a combination of the following flags:

Value
Meaning

WFS_CIM_RA_RETRACT
Items may be retracted to the retract cash unit.

WFS_CIM_RA_REJECT
Items may be retracted to the reject cash unit.

WFS_CIM_RA_TRANSPORT
Items may be retracted to the transport.
WFS_CIM_RA_STACKER
Items may be retracted to the intermediate stacker.

WFS_CIM_RA_BILLCASSETTES
Items may be retracted to item cassettes, i.e. cash-in and recycle cash units.

WFS_CIM_RA_NOTSUPP
The CIM does not have the ability to retract.

fwRetractTransportActions
Specifies the actions which may be performed on items which have been retracted to the transport. If the device does not have a retract the capability to retract from the transport this field will be WFS_CIM_NOTSUPP. Otherwise this field will be set to one a combination of the following values flags:

Value
Meaning

WFS_CIM_PRESENT
The items may be moved to the exit position.

WFS_CIM_RETRACT
The items may be retracted to a retract cash unit.

WFS_CIM_REJECT
The items may be retracted to a reject cash unit.

WFS_CIM_NOTSUPP
The CIM does not have the ability to retract from the transport.

fwRetractStackerActions
Specifies the actions which may be performed on items which have been retracted to the stacker. If the device does not have a retract the capability to retract from the stacker this field will be WFS_CIM_NOTSUPP. Otherwise this field will be set to one a combination of the following values flags:

Value
Meaning

WFS_CIM_PRESENT
The items may be moved to the exit position.

WFS_CIM_RETRACT
The items may be retracted to a retract cash unit.

WFS_CIM_REJECT
The items may be retracted to a reject cash unit.
WFS_CIM_NOTSUPP
The CIM does not have the ability to retract from the stacker.
lpszExtra
The parameter that reports how notes are classified and handled is reported in lpszExtra as follows. If level 2/3 notes are not to be returned to the customer by these rules, they will not be returned regardless of whether their specific note type is configured to not be accepted by WFS_CMD_CIM_CONFIGURE_NOTETYPES:
Clarifications for WFS_INF_CIM_CASH_UNIT_INFO
Output Param
…
fwItemType
…

This value is zero for cash units that cannot accept media items, i.e. cash units that can only dispense, or for cash units that are configured not to accept any items. It may be possible to use the command WFS_CMD_CIM_CONFIGURE_CASH_IN_UNITS to configure the cash unit to accept media.
ulCount
...
If the cash unit is a recycle cash unit (fwType is WFS_CIM_TYPERECYCLING) then this value may not be the same as the value of ulCashInCount. This value will be decremented as a result of a dispense transaction on the CDM interface. During dispense transactions on the CDM, this value includes any items that have been dispensed but not yet presented to the customer. This count is only decremented when these items are either successfully presented to the customer known to be in customer access or successfully rejected.
lpNoteNumberList
Pointer to a WFSCIMNOTENUMBERLIST structure. The content of this structure is persistent.
If the cash unit is a CDM specific cash unit (fwType = WFS_CIM_TYPECDMSPECIFIC)
with usCDMType = WFS_CDM_TYPEBILLCASSETTE this pointer will be NULL.

If the cash unit is not a retract cash unit (fwType is not WFS_CIM_TYPERETRACTCASSETTE), then the lpNoteNumberList will point to the list of items inside the cash unit. Additionally if the contents of the cash unit are not known then this pointer will be NULL.

If the cash unit is a retract cash unit (fwType is WFS_CIM_TYPERETRACTCASSETTE) this pointer will be NULL except for the following cases:

· If ECB Article 6 is supported and the retract cash unit is configured to accept level 2 notes then the number and type of level 2 notes is returned in the lpNoteNumberList and ulCount contains the number of retract operations. ulCashInCount contains the actual number of level 2 notes.
· If items are recognized during retract operations then the number and type of notes retracted is returned in lpNoteNumberList and ulCount contains the number of retract operations. ulCashInCount contains the actual number of retracted items.
If both cases apply then the number and type of level 2 notes and notes retracted is returned in the lpNoteNumberList and ulCount contains the number of retract operations.
ulCashInCount contains the actual number of level 2 notes and retracted items.
…

usStatus
Describes the status of the cash unit as one of the following values:

Value
Meaning

…

WFS_CIM_STATCULOW
The cash unit is almost empty (i.e. reached or below the threshold defined by ulMinimum). This value is only reported for CDM specific cash units which can dispense media items.(fwType == WFS_CIM_TYPECDMSPECIFIC) It is not mandatory to report this for recycle cash units (fwType == WFS_CIM_TYPERECYCLING).
…

lppPhysical
Pointer to an array of pointers to WFSCIMPHCU structures:
…
usPStatus
Supplies the status of the physical cash unit as one of the following values:

Value
Meaning

…

WFS_CIM_STATCULOW
The cash unit is almost empty. This value is only reported for CDM specific cash units which can dispense media items. It is not mandatory to report this for recycle cash units (fwType == WFS_CIM_TYPERECYCLING) (fwType == WFS_CIM_TYPECDMSPECIFIC).
…
WFS_CIM_STATCUMANIP
The cash unit has been inserted (including removal followed by a reinsertion) when the device was not in the exchange state.
Clarifications for WFS_INF_CIM_BANKNOTE_TYPES

Output Param
…

bConfigured
Specifies whether or not the banknote reader recognizes this note type. If TRUE the banknote reader will accept this note type during a cash-in operation, if FALSE the banknote reader will refuse this note type unless it must be retained by Level 2/3 note handling rules.
Clarifications for WFS_INF_CIM_CASH_IN_STATUS
Description
This command is used to get information about the status of the last currently active cash-in transaction or in the case where no cash-in transaction is active the status of the most recently ended Cash-In transaction.
This value is persistent and is valid until the next WFS_CMD_CIM_CASH_IN_START.

Input Param
None.

Output Param
LPWFSCIMCASHINSTATUS
lpCashInStatus;

typedef struct _wfs_cim_cash_in_status
{
WORD
wStatus;
USHORT
usNumOfRefused;
LPWFSCIMNOTENUMBERLIST
lpNoteNumberList;
LPSTR
lpszExtra;
} WFSCIMCASHINSTATUS, * LPWFSCIMCASHINSTATUS;

wStatus
Status of the currently active or most recently ended Cash-In transaction. Possible values are:

Value
Meaning

WFS_CIM_CIOK
The Cash-In transaction is complete and has ended with a WFS_CMD_CIM_CASH_IN_END command call.

WFS_CIM_CIROLLBACK
The Cash-In transaction was rolled back has ended with a WFS_CMD_CIM_CASH_IN_ROLLBACK command call.

WFS_CIM_CIACTIVE
There is a Cash-In transaction active. See the WFS_CMD_CIM_CASH_IN_START command description for a definition of an active cash-in transaction.
WFS_CIM_CIRETRACT
The Cash-In transaction ended with the items being retracted with a WFS_CMD_CIM_RETRACT command call, or a retract command call on a compound device class.

WFS_CIM_CIUNKNOWN
The state of the Cash-In transaction is unknown. This status is also set if the lpNoteNumberList details are not known or are not reliable.
WFS_CIM_CIRESET
The cash-in transaction ended with a WFS_CMD_CIM_RESET command call, or a reset command call on a compound device class.
usNumOfRefused
Specifies the number of items refused during the currently active or most recently ended Cash-In transaction period.

lpNoteNumberList
List of banknote types that were inserted, identified and accepted during the currently active or most recently ended cash-in transaction period. The WFSCIMNOTENUMBER .ulCount value within this structure is the count of items of identified and accepted notes during the cash-in transaction period. If notes items have been rolled back (wStatus is WFS_CIM_CIROLLBACK) they will be included in this list. If wStatus is WFS_CIM_CIRETRACT or WFS_CIM_CIRESET then identified and accepted items moved to Cash-In or Recycle cash units are included in this list, but items moved to the Retract or Reject cash units are not included. For a description of the WFSCIMNOTENUMBERLIST structure see the definition of the command WFS_INF_CIM_CASH_UNIT_INFO.

If a note handling standard is supported then lpNoteNumberList includes any level 2 or level 3 notes.

Clarifications for WFS_INF_CIM_GET_P6_INFO
Description
This command is used to get information about the number of level 2 / level 3 notes detected and the number of level2 / level 3 signatures created. This P6 information is available from the point where the WFS_EXEE_CIM_INPUT_P6 (or WFS_EXEE_CDM_INPUT_P6) event is generated until a command that could move notes within the device is executed or a new cash-in transaction is started. one of the following CIM commands is executed:
WFS_CMD_CIM_CASH_IN_START, WFS_CMD_CIM_CASH_IN, WFS_CMD_CIM_CASH_IN_ROLLBACK, WFS_CMD_CIM_CASH_IN_END, WFS_CMD_CIM_RETRACT, WFS_CMD_CIM_RESET, WFS_CMD_CIM_START_EXCHANGE, WFS_CMD_CIM_END_EXCHANGE, WFS_CMD_CIM_REPLENISH.
Additionally for a Recycler, the following CDM commands will also invalidate the information:
WFS_CMD_CDM_DISPENSE, WFS_CMD_CDM_COUNT, WFS_CMD_CDM_PRESENT, WFS_CMD_CDM_RETRACT, WFS_CMD_CDM_OPEN_SHUTTER, WFS_CMD_CDM_CLOSE_SHUTTER, WFS_CMD_CDM_RESET, WFS_CMD_CDM_TEST_CASH_UNITS.
This command can be used both within and out with a cash-in transaction.

Output Param
…
…
lpNoteNumberList
List of banknote types that were recognized as level x2 or level 3 notes. The WFSCIMNOTENUMBER.ulCount values are the count of level 2 or level 3 notes. If the pointer is NULL, no level x2 or level 3 notes were recognized. For a description of the WFSCIMNOTENUMBERLIST structure see the definition of the command WFS_INF_CIM_CASH_UNIT_INFO.

usNumOfSignatures
Number of level x2 or level 3 signatures of this cash-in transaction. If it is zero no signatures are available.

Clarifications for WFS_INF_CIM_GET_P6_SIGNATURE
Description
This command is used to get one specific signature. Signatures are available from the point where the WFS_EXEE_CIM_INPUT_P6 (or WFS_EXEE_CDM_INPUT_P6) event is generated until a command that could move notes within the device is executed or a new cash-in transaction is started. This command can be used both within and out with a cash-in transaction. one of the following CIM commands is executed:
WFS_CMD_CIM_CASH_IN_START, WFS_CDM_CIM_CASH_IN, WFS_CDM_CIM_CASH_IN_ROLLBACK, WFS_CDM_CIM_CASH_IN_END, WFS_CDM_CIM_RETRACT, WFS_CDM_CIM_RESET, WFS_CDM_CIM_START_EXCHANGE, WFS_CDM_CIM_END_EXCHANGE, WFS_CDM_CIM_REPLENISH.
Additionally for a Recycler, the following CDM commands will also invalidate the information:
WFS_CMD_CDM_DISPENSE, WFS_CMD_CDM_COUNT, WFS_CMD_CDM_PRESENT, WFS_CMD_CDM_RETRACT, WFS_CMD_CDM_OPEN_SHUTTER, WFS_CMD_CDM_CLOSE_SHUTTER, WFS_CMD_CDM_RESET, WFS_CMD_CDM_TEST_CASH_UNITS.

This command is used to retrieve the required information on an individual item basis. Applications should loop retrieving the information for each index and for each level reported with the WFS_INF_CIM_GET_P6_INFO command.
Output Param
..

usIndex
Specifies the index (zero to usNumOfSignatures-1) of the required signature.
Note: Signatures may be returned in any order; there is no implied relationship between this index and the order in which items are reported in the lpNoteNumberList in WFS_INF_CIM_GET_P6_INFO.
Clarifications for WFS_INF_CIM_GET_ITEM_INFO
Description
This command is used to retrieve the information detected for the items processed during the last command that could move notes. The availability of this information is reported through the WFS_EXEE_CIM_INFO_AVAILABLE event. The data is non-cumulative and is only available until the next command that could move notes is executed (including commands on the CDM interface on recycling devices) or a new cash-in transaction is started. This command can be used both within and out with a cash-in transaction.
This command is used to get information about the number of level 2 / level 3 / level 4 notes detected and the number of level 2 / level 3 /level 4 signatures created. This information is available from the point where the first WFS_EXEE_CIM_INFO_AVAILABLE event is generated until one of the following CIM commands is executed:
WFS_CMD_CIM_CASH_IN_START, WFS_CDM_CIM_CASH_IN, WFS_CDM_CIM_CASH_IN_ROLLBACK, WFS_CDM_CIM_CASH_IN_END, WFS_CDM_CIM_RETRACT, WFS_CDM_CIM_RESET, WFS_CDM_CIM_START_EXCHANGE, WFS_CDM_CIM_END_EXCHANGE, WFS_CDM_CIM_REPLENISH
Additionally for a Recycler, the following CDM commands will also invalidate the information:
WFS_CMD_CDM_DISPENSE, WFS_CMD_CDM_COUNT, WFS_CMD_CDM_PRESENT, WFS_CMD_CDM_RETRACT, WFS_CMD_CDM_OPEN_SHUTTER, WFS_CMD_CDM_CLOSE_SHUTTER, WFS_CMD_CDM_RESET, WFS_CMD_CDM_TEST_CASH_UNITS.
Theis command is similar to the WFS_INF_CIM_GET_P6_SIGNATURE command but returns additional information for Llevel 2 / level 3 notes and also returns information relating to Llevel 4 notes. The WFS_INF_CIM_GET_P6_INFO command, the WFS_INF_CIM_GET_P6_SIGNATURE command and the WFS_EXEE_CIM_INPUT_P6 (or WFS_EXEE_CDM_INPUT_P6) event only relate to Llevel 2 and Llevel 3 notes. The WFS_EXEE_CIM_INPUT_P6 event signals that a suspected forgery has been detected and is only generated when level 2 and/or level 3 notes are detected. The WFS_INF_CIM_GET_ITEM_INFO command (this command) and the WFS_EXEE_CIM_INFO_AVAILABLE apply to every transaction (and WFS_CMD_CIM_CASH_IN in particular). The WFS_EXEE_CIM_INFO_AVAILABLE event signals that item information is available and will be generated during normal transaction processing.
The details about the information available for each note type is reported through the WFS_EXEE_CIM_INFO_AVAILABLE event, tThis command is used to retrieve the required information on an individual item basis. Applications should loop retrieving the information for each index and for each level reported with the WFS_EXEE_CIM_INFO_AVAILABLE event.
Output Param
..

lpszImageFileName
This field contains the serial number of the item as a Unicode string. A '?' character (0x003F) is used to represent any serial number character that cannot be recognized. If no serial number is available or has not been requested then lpszSerialNumber is NULL.

The application is responsible for the use and management of this file. For example, the application can transfer the image files to a directory which is managed by the application.
Clarifications for WFS_CMD_CIM_CASH_IN_START
Description
Before initiating a cash-in operation, an application must issue the WFS_CMD_CIM_CASH_IN_START command to begin a cash-in transaction. During a cash-in transaction any number of WFS_CMD_CIM_CASH_IN commands may be issued. The transaction is ended when either a WFS_CMD_CIM_CASH_IN_ROLLBACK, WFS_CMD_CIM_CASH_IN_END, WFS_CMD_CIM_RETRACT or WFS_CMD_CIM_RESET command is sent. Where WFSCIMCAPS.bShutterControl == FALSE this command precedes any explicit operation of the shutters.
…

A hardware failure during the cash-in transaction does not reset the note number list information; instead the note number list information will include items that could be accepted and identified up to the point of the hardware failure.
Input Param
…
bUseRecycleUnits
Specifies whether or not the recycle cash units should be used when items are cashed in on a successful WFS_CMD_CIM_CASH_IN_END command for money cashed in during the transaction period. This parameter will be ignored if there are no recycle cash units or the hardware does not support this.
Clarifications for WFS_CMD_CIM_CASH_IN
Description
This command moves items into the CIM from an input position.
On devices with implicit shutter control, the WFS_EXEE_CIM_INPUTINSERTITEMS event will be generated when the device is ready to start accepting media.

The items may pass through the banknote reader for identification. Failure to identify items does not mean that the command has failed - even if some or all of the items are rejected by the banknote reader, the command may return WFS_SUCCESS. In this case one or more WFS_EXEE_CIM_INPUTREFUSE event will be sent to report the rejection.
If the device does not have a banknote reader then the output parameter will be NULL.
If the device has a cash-in stacker then this command will cause inserted Level 4 items to be moved there after validation. Level 2 and level 3 items may also be moved to the cash-in stacker, but some devices may immediately move them to a designated cash unit. Items will be held on the stacker will remain there until the current cash-in transaction is either cancelled by WFS_CMD_CIM_CASH_IN_ROLLBACK or confirmed by WFS_CMD_CIM_CASH_IN_END. These commands will cause any level 2 or level 3 items on the cash-in stacker to be moved to the appropriate cash unit. If there is no cash-in stacker then this command will move items directly to the cash units and WFS_CMD_CIM_CASH_IN_ROLLBACK will not be supported. Cash unit information will be updated accordingly whenever notes are moved to a cash unit during this command.
…
If bShutterControl is TRUE, it is also possible that a device may return refused notes in multiple subsequent bunches. In this case, the WFS_CMD_CIM_CASH_IN command will not complete until the final bunch has been presented and the WFS_SRVE_CIM_ITEMSPRESENTED has been generated.
Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

…
WFS_ERR_CIM_TOOMANYITEMS
There were too many items inserted previously. The cash-in stacker is full at the beginning of this command.

WFS_ERR_CIM_FOREIGN_ITEMS_DETECTED
Foreign items have been detected inside the input position.

WFS_ERR_CIM_SHUTTERNOTOPEN
Shutter failed to open.

Events
In addition to the generic events defined in [Ref. 1], the following events can be generated by this command:

Value
Meaning

WFS_EXEE_CIM_CASHUNITERROR
A problem occurred with a cash unit.

WFS_EXEE_CIM_INPUT_P6
Level 2 and / or level 3 notes are detected.

WFS_EXEE_CIM_INPUTREFUSE
A part or all of the amount of the cash-in order was refused.

WFS_EXEE_CIM_NOTEERROR
An item detection error occurred.

WFS_EXEE_CIM_SUBCASHIN
A cash-in sub-operation has completed. If the cash-in operation has been divided up into a series of sub-operations under hardware control this event is generated each time one of the sub-cash-in operations completes successfully. It may be used for progress reporting.

WFS_SRVE_CIM_ITEMSINSERTED
Items have been inserted into the cash-in position by the user.

WFS_SRVE_CIM_ITEMSTAKEN
The items have been removed by the user. This event is only generated if the bItemsTakenSensor field returned in the Capabilities information is TRUE.

WFS_SRVE_CIM_ITEMSPRESENTED
Items have been presented to the user to be taken.

WFS_EXEE_CIM_INFO_AVAILABLE
Information is available for items detected during the cash processing operation.

WFS_EXEE_CIM_INSERTITEMS
Device is ready to accept items from the user.

WFS_USRE_CIM_CASHUNITTHRESHOLD
A threshold condition has occurred in one of the cash units.

Clarifications for WFS_CMD_CIM_CASH_IN_END
Comments
None. In the special case where all the items inserted by the customer are classified as level 2 and/or 3 items and the Service Provider is configured to automatically retain these item types then the WFS_CMD_CIM_CASH_IN_END command will complete with WFS_SUCCESS even if the hardware may have already moved the level 2 and/or 3 items to their respective bins on the WFS_CMD_CIM_CASH_IN command and there are no items on escrow at the start of WFS_CMD_CIM_CASH_IN_END. This allows the location of the notes retained to be reported in the output parameter. If no items are available for cash in for any other reason then the WFS_ERR_CIM_NOITEMS error code is returned
Clarifications for WFS_CMD_CIM_CASH_IN_ROLLBACK
Events
In addition to the generic events defined in [Ref. 1], the following events can be generated as a result of this command:

Value
Meaning

WFS_EXEE_CIM_CASHUNITERROR
A problem occurred with a Cash Unit.

WFS_SRVE_CIM_ITEMSTAKEN
The items have been removed by the user. This event is only generated if the bItemsTakenSensor field returned in the Capabilities information is TRUE.
WFS_SRVE_CIM_ITEMSPRESENTED
Items have been presented to the user to be taken.

WFS_EXEE_CIM_INPUT_P6
Level 2 and / or level 3 notes are detected during this operation.

WFS_EXEE_CIM_INFO_AVAILABLE
Information is available for items detected during the cash processing operation.

WFS_USRE_CIM_CASHUNITTHRESHOLD
A threshold condition has occurred in one of the cash units.

Clarifications for WFS_CMD_CIM_RETRACT
Description
This command retracts items from an output position or internal areas within the CIM. Retracted items will be moved to either a retract bin, a reject bin, cash-in/recycle cash units, the transport or an intermediate stacker area. If items from internal areas within the CIM are preventing items at an output position from being retracted then the items from the internal areas will be retracted first. When the items are retracted from an output position the shutter is closed automatically, even if the bShutterControl capability is set to FALSE.
Input Param
LPWFSCIMRETRACT lpRetract;
fwOutputPosition
Specifies the output position from which to retract the bills. Possible values are The value is set to one of the following values:
…
Events
In addition to the generic events defined in [Ref. 1], the following events can be generated as a result of this command:

Value
Meaning

...

WFS_SRVE_CIM_CASHUNITINFOCHANGED
A cash unit was updated as a result of this command.
Clarifications for WFS_CMD_CIM_OPEN_SHUTTER

Description
This command opens the shutter.
In cases where multiple bunches are to be returned under explicit shutter control and the first bunch has already been presented and taken and the output position is empty, this command moves the next bunch to the output position before opening the shutter. This does not apply if the output position is not empty, for example if items had been re-inserted or dropped back into the output position as the shutter closed.
…

Events
In addition to the generic events defined in [Ref. 1], the following events can be generated as a result of this command:

Value
Meaning

WFS_SRVE_CIM_ITEMSTAKEN
The items have been removed by the user. This event is only generated if the bItemsTakenSensor field returned in the capabilities information is TRUE.

WFS_SRVE_CIM_ITEMSINSERTED
Items have been inserted by the user.

WFS_SRVE_CIM_SHUTTERSTATUSCHANGED
The shutter status has changed.

WFS_SRVE_CIM_ITEMSPRESENTED
Items have been presented to the user to be taken.
Clarifications for WFS_CMD_CIM_CLOSE_SHUTTER
Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

…
WFS_ERR_CIM_FOREIGN_ITEMS_DETECTED
Foreign items have been detected in the input position. The shutter is open.

Clarifications for WFS_CMD_CIM_SET_CASH_UNIT_INFO
Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

…
WFS_ERR_CIM_CASHUNITERROR
A problem occurred with a cash unit. A WFS_EXEE_CIM_CASHUNITERROR event will be posted with the details.

Clarifications for WFS_CMD_CIM_START_EXCHANGE
Description
...
While in an exchange state the CIM will process all WFS requests, excluding WFS[Async]Execute commands other than WFS_CMD_CIM_END_EXCHANGE and WFS_CMD_CIM_RESET.

Events
In addition to the generic events defined in [Ref. 1], the following events can be generated by this command:
Value
Meaning

...

WFS_USRE_CIM_CASHUNITTHRESHOLD

A threshold condition has occurred in one of the cash units.
This event is not generated for recycling cash units.

WFS_SRVE_CIM_CASHUNITINFOCHANGED
A cash unit was changed.

Clarifications for WFS_CMD_CIM_END_EXCHANGE

Description
….

A WFS_EXEE_CDM_CASHUNITERROR event will be sent for any logical cash unit which cannot be successfully updated. If no cash units could be updated then a WFS_ERR_CIM_CASHUNITERROR code will be returned and WFS_EXEE_CIM_CASHUNITERROR events generated for every logical cash unit that could not be updated

Even if this command does not return WFS_SUCCESS the exchange state has ended.

Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

WFS_ERR_CIM_INVALIDTELLERID
Invalid teller ID. This error will never be generated by a Self-Service CIM.

WFS_ERR_CDM_CASHUNITERROR
A cash unit problem occurred with a cash unit. A that meant no cash units could be updated. One or more WFS_EXEE_CDM_CASHUNITERROR events will be posted with the details.

Clarifications for WFS_CMD_CIM_RESET

Input Param
If the application does not wish to specify a cash unit or position it can set lpResetIn to NULL. In this case the Service Provider will determine where to move any items found.
LPWFSCIMITEMPOSITION lpResetIn;

typedef struct _wfs_cim_itemposition

{

USHORT

usNumber;

LPWFSCIMRETRACT

lpRetractArea;

WORD

fwOutputPosition;

} WFSCIMITEMPOSITION, *LPWFSCIMITEMPOSITION;

usNumber
The usNumber of the cash unit to which items which were inside the CIM when the reset was issued should be moved. If the items should be moved to an output position this value is zero. In the case of a single cash unit destination this value specifies the cash unit to be used for the storage of any items found, i.e. when items are to be moved to a reject or retract cash unit. In all other cases this value must be zero, i.e. when items are to be moved to item cassettes or an output position.
lpRetractArea
This field is only used if the cash unit specified by usNumber is a retract cash unit. In all other cases this field is set to NULL. For a description of this structure see the WFSCIMRETRACT structure defined in WFS_CMD_CIM_RETRACT.
This field is used if items are to be moved to a retract cassette or to item cassettes. If items are to be moved to a reject cash unit or to an output position then this field must be NULL.

typedef struct _wfs_cim_retract

{

WORD

fwOutputPosition;

USHORT

usRetractArea;

USHORT

usIndex;

} WFSCIMRETRACT, *LPWFSCIMRETRACT;

fwOutputPosition
This value will be ignored.

usRetractArea
This value specifies the area to which the items are to be moved to. Possible values are:

Value
Meaning

WFS_CIM_RA_RETRACT
Items will be moved to a retract cash unit. In the case where several cash units of type WFS_CIM_TYPERETRACTCASSETTE exist the usNumber parameter will define which retract unit the items will be moved to.

WFS_CIM_RA_BILLCASSETTES
Items will be moved to item cassettes, i.e. cash-in and recycle cash units.

usIndex
If usRetractArea is set to WFS_CIM_RA_RETRACT this field is the logical retract position inside the container into which the cash is to be retracted. This logical number starts with a value of one (1) for the first retract position and increments by one for each subsequent position. If the container contains several logical retract cash units (of type WFS_CIM_TYPERETRACTCASSETTE in command WFS_INF_CIM_CASH_UNIT_INFO), usIndex would be incremented from the first position of the first retract cash unit to the last position of the last retract cash unit defined in WFSCIMCASHINFO. The maximum value of usIndex is the sum of the ulMaximum of each retract cash unit. If usRetractArea is not set to WFS_CIM_RA_RETRACT the value of this field is ignored.

fwOutputPosition
The output position to which items are to be moved. If the usNumber is non-zero or if lpRetractArea indicates WFS_CIM_RA_BILLCASSETTES, then this field will be zero. The value is set to one of the following values:
Value
Meaning

WFS_CIM_POSNULL
Take the default configuration.

WFS_CIM_POSOUTLEFT
Move items to the left output position.

WFS_CIM_POSOUTRIGHT
Move items to the right output position.

WFS_CIM_POSOUTCENTER
Move items to the center output position.

WFS_CIM_POSOUTTOP
Move items to the top output position.

WFS_CIM_POSOUTBOTTOM
Move items to the bottom output position.

WFS_CIM_POSOUTFRONT
Move items to the front output position.

WFS_CIM_POSOUTREAR
Move items to the rear output position.

If the application does not wish to specify a cash unit or position it can set lpResetIn to NULL. In this case the Service Provider will determine where to move any items found.
Clarifications for WFS_CMD_CIM_CONFIGURE_NOTETYPES
Description
This command is used to configure the note types the banknote reader will should recognize accept during cash-in. All note types the banknote reader has toshould recognize accept must be given in the input structure. If an unknown note type is given the error code WFS_ERR_UNSUPP_DATA will be returned.

Clarifications for WFS_CMD_CIM_CREATE_P6_SIGNATURE

Description
….

On devices with implicit shutter control, the WFS_EXEE_CIM_INPUTINSERTITEMS event will be generated when the device is ready to start accepting media.

Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

WFS_ERR_CIM_EXCHANGEACTIVE
The CIM is in an exchange state.

WFS_ERR_CIM_POSITION_NOT_EMPTY
The output position is not empty so a banknote cannot be inserted.

WFS_ERR_CIM_SHUTTERNOTOPEN
Shutter failed to open.

WFS_ERR_CIM_SHUTTERNOTCLOSED
Shutter failed to close.

WFS_ERR_CIM_FOREIGN_ITEMS_DETECTED
Foreign items have been detected in the input position.

Events
In addition to the generic events defined in [Ref. 1], the following events can be generated by this command:

Value
Meaning

…

WFS_EXEE_CIM_INFO_AVAILABLE
Information is available for items detected during this operation.
Clarifications for WFS_CMD_CIM_POWER_SAVE_CONTROL
Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

WFS_ERR_CIM_EXCHANGEACTIVE
The CIM is in an exchange state.

Clarifications for WFS_EXEE_CIM_CASHUNITERROR

Event Param
…
wFailure
Specifies the kind of failure that occurred in the cash unit. Values are:

Value
Meaning

…
WFS_CIM_CASHUNITINVALID
Specified cash unit ID is invalid.

…

Clarifications for WFS_SRVE_CIM_ITEMSTAKEN
Description
This service event specifies that items presented to the user have been taken. This event may be generated at any time.
Clarifications for WFS_EXEE_CIM_INPUTREFUSE

Description
This execute event specifies that the device has refused either a portion or the entire amount of the cash-in order.

Event Param
LPUSHORT lpusReason;

lpusReason
Pointer to an USHORT holding the reason for refusing a part of the amount. Possible values are:

Value
Meaning

….

WFS_CIM_DEPOSITFAILURE
A deposit has failed for a reason not covered by the other reasons and the failure is not a fatal hardware problem, for example failing to pick an item from the input area.

Clarifications for WFS_SRVE_CIM_ITEMSPRESENTED
Description
This service event specifies that items have been presented to the output position. In the case of implicit shutter control the items need to be taken. In the case of explicit shutter control the shutter should be opened to allow the user to take the items, and the shutter has been opened to allow the items to be taken.

Clarifications for WFS_EXEE_CIM_POWER_SAVE_CHANGE
Comments
None. If another device class compounded with this device enters into a power saving mode, this device will automatically enter into the same power saving mode and this event will be generated.
Clarifications for Stacker Becomes Full (Explicit Shutter Control)
	
	Customer
	Application
	XFS Commands and Events

	1.-6.
	See OK Transaction (Explicit Shutter Control)
	
	

	7.
	
	
	WFS_CMD_CIM_CASH_IN
WFS_EXEE_CIM_INPUTREFUSE (StackerFull)

and

WFS_CMD_CIM_CASH_IN completes with WFS_SUCCESS

WFS_SRVE_CIM_ITEMSPRESENTED

	8.
	
	Open Shutter
	WFS_CMD_CIM_OPEN_SHUTTER

	9.
	
	Ask the customer to remove the excess money.
	

	10.
	Customer removes excess money
	
	

	11.
	If bItemsTakenSensor == FALSE Confirm Completion or use application timeout
	
	If bItemsTakenSensor == TRUE WFS_SRVE_CIM_ITEMSTAKEN

	12.
	
	Close Shutter
	WFS_CMD_CIM_CLOSE_SHUTTER

	13.
	
	Display the amount recognized so far and tell the customer that the stacker is full
	

	14.
	
	Ask the customer for further actions:

If they want to deposit the amount:

Continue with 15.

If they want to get back all items inserted so far see table "Cancellation by Customer (Explicit Shutter Control)"
	

	15.
	
	Transport the money into the cash units RECYCLE_UNIT/CASHINBOX
	WFS_CMD_CIM_CASH_IN_END

	16.
	
	Ask the customer if they want to deposit more money.

If they want to deposit more:

Repeat from 1.

If they want to finish the transaction:

Continue with 17.
	

	17.
	
	Credit the money to the customers account
	

	18.
	
	End of Transaction
	

Clarifications for Bill Recognition Error (Explicit Shutter Control)
	
	Customer
	Application
	XFS Commands and Events

	1.-6.
	See OK Transaction (Explicit Shutter Control)
	
	

	7.
	
	
	WFS_CMD_CIM_CASH_IN
WFS_EXEE_CIM_INPUTREFUSE (InvalidBill)

and

Completion of WFS_CMD_CIM_CASH_IN with WFS_SUCCESS

WFS_SRVE_CIM_ITEMSPRESENTED

	8.
	
	Open Shutter
	WFS_CMD_CIM_OPEN_SHUTTER

	9.
	
	Tell the customer that the bills were not recognized and that he should take the bills.
	

	10.
	Customer removes unrecognized money
	
	

	11.
	If bItemsTakenSensor == FALSE, confirm completion or use application timeout
	
	If bItemsTakenSensor == TRUE WFS_SRVE_CIM_ITEMSTAKEN

	12.
	
	Close Shutter
	WFS_CMD_CIM_CLOSE_SHUTTER

	13.
	
	Display the amount recognized so far
	

	14.
	
	Ask the customer for further actions:

If they want to deposit the amount:

Continue with 15.

If they want to get back all items inserted so far see table "Cancellation by Customer (Explicit Shutter Control)"
	

	15.
	
	Transport the money into the cash units RECYCLE_UNIT/CASHINBOX
	WFS_CMD_CIM_CASH_IN_END

	16.
	
	Credit the money to the customers account
	

	17.
	
	End of Transaction
	

Clarifications for OK Transaction (Implicit Shutter Control)
	
	Customer
	Application
	XFS Commands and Events

	1.
	Customer selects cash-in operation.
	
	WFS_CMD_CIM_CASH_IN_START

	2.
	
	
	WFS_CMD_CIM_CASH_IN (Service Provider opens the input shutter). WFS_EXEE_CIM_INPUTINSERTITEMS event is sent when the shutter is fully open and the device is ready to begin accepting items.

	...
	
	
	

Clarifications for Cancellation by Customer (Implicit Shutter Control)
	
	Customer
	Application
	XFS Commands and Events

	1.-98.
	See OK Transaction (Implicit Shutter Control)
	
	

	109.
	Selection : Return all the items
	
	

	1110.
	
	Transport the items recognized to the output position
	WFS_CMD_CIM_CASH_IN_ROLLBACK.

	1211.
	
	Request removal of the money.
	

	1312.
	Customer takes the money from the output position
	
	

	1413.
	If bItemsTakenSensor == FALSE, confirm completion or use application timeout
	
	If bItemsTakenSensor == TRUE

WFS_SRVE_CIM_ITEMSTAKEN. The Service Provider closes the Shutter.

	1514.
	
	End of Transaction
	

Clarifications for Implicit Control of the Shutter - WFS_EXEE_CIM_SUBCASHIN event

	
	Customer
	Application
	XFS Commands and Events

	1.-65.
	See OK Transaction (Implicit Shutter Control)
	
	

	6.
	
	
	The Service Provider closes the input shutter and begins bill recognition.

	7.
	
	
	The device processes the bills or coins in batches. Each time a batch is completed a WFS_EXEE_CIM_SUBCASHIN event is posted then the cash-in operation continues.

	8.
	
	
	The WFS_CMD_CIM_CASH_IN command completes.

	9.
	
	Display the number of bills and/or amount recognized so far.
	

	10.
	
	Ask the customer for further actions:

If he wants to insert more money:

Repeat from 2.

If he wants to finish the transaction:

Continue with 11.

If he wants to get back all items inserted so far see table "Cancellation by Customer (Implicit Shutter Control)"
	

	11.
	
	
	WFS_CMD_CIM_CASH_IN_END

	12.
	
	End of Transaction
	

Clarifications for Multiple Rollback Notes (Implicit Shutter Control)

	
	Customer
	Application
	XFS Command

	1.-109.
	See OK Transaction Cancellation by Customer (Implicit Shutter Control)
	
	

	10.
	
	Initiate the rollback operation.
	WFS_CMD_CIM_CASH_IN_ROLLBACK

	11.
	
	
	The Service Provider begins the Rollback. As a result of this n batches of notes must be returned to the customer.

	12.
	
	
	Return Batch of notes to customer. The Service Provider implicitly opens the shutter.

WFS_SRVE_CIM_ITEMSPRESENTED

	13.
	
	Tell the customer to take the bills.
	

	14.
	Customer removes money.
	
	WFS_SRVE_CIM_ITEMSTAKEN

The Service Provider implicitly closes the shutter.

	15.
	
	
	Repeat steps 11 through 14 until batches 2 to n-1 are returned to the customer

	16.
	
	
	Return Batch n (last) of notes to customer

The Service Provider implicitly opens the shutter.

WFS_SRVE_CIM_ITEMSPRESENTED

	17.
	
	
	Completion of WFS_CMD_CIM_CASH_IN_ROLLBACK with WFS_SUCCESS

	18.
	
	Tell the customer to take the bills.
	

	19.
	Customer removes money.
	
	

	20.
	
	
	WFS_SRVE_CIM_ITEMSTAKEN

The Service Provider implicitly closes the shutter.

	21.
	
	End of Transaction
	

8.16 Multiple Bunch Timeout Handling

The following sections describe flows where the Service Provider could potentially present refused items in multiple bunches during the WFS_CMD_CIM_CASH_IN command. As the WFS_CMD_CIM_CASH_IN timeout (dwTimeout parameter in WFSAsyncExecute or WFSExecute) may elapse before the last bunch is presented, resulting in a WFS_ERR_TIMEOUT in the completion event, it is recommended that the application take control by specifying a long dwTimeout and use timers to allow sufficient time for user interaction before cancelling the command. dwTimeout should be set sufficiently long to allow for any scenario; it could be set to WFS_INDEFINITE_WAIT as the command would be explicitly cancelled by the application if timers elapse.

Each flow covers the following cases:

· bShutterControl == TRUE, bItemsInsertedSensor == TRUE, bItemsTakenSensor == TRUE, bPresentControl == TRUE

No Items Inserted

In this flow, the user does not insert items within the required time, therefore the application cancels the WFS_CMD_CIM_CASH_IN command using WFS_CMD_CIM_CASH_IN_END.

	Step
	Customer
	Application
	XFS Command

	1.
	Customer selects cash-in operation.
	
	WFS_CMD_CIM_CASH_IN_START

	2.
	
	
	* WFS_CMD_CIM_CASH_IN initiated with a long timeout (for example, WFS_INDEFINITE_WAIT) using WFSAsyncExecute

The Service Provider implicitly opens the shutter.

…

WFS_SRVE_CIM_SHUTTERSTATUS​CHANGED(WFS_CIM_SHTOPEN)

WFS_EXEE_CIM_INSERTITEMS event is sent when the shutter is fully open and the device is ready to begin accepting items.

	3.
	
	Ask the customer to insert money. Application sets an insertion timer.
	

	4.
	Customer does not insert money.
	
	

	5.
	
	The insertion timer elapses
	WFSCancelAsyncRequest is executed to end the WFS_CMD_CIM_CASH_IN command.

	6.
	
	
	* If command cancellation is supported the WFS_CMD_CIM_CASH_IN completes with WFS_ERR_CANCELED.

WFS_SRVE_CIM_SHUTTERSTATUS​CHANGED(WFS_CIM_SHTCLOSED)

	7.
	
	Transaction cancelled
	WFS_CMD_CIM_CASH_IN_END

	8.
	
	End of transaction.
	

First Bunch Not Taken

In this flow, the user does not take the first returned bunch within the required time, therefore the application cancels the WFS_CMD_CIM_CASH_IN command. The same sequence can be extended to any bunch other than the last bunch as this would complete the WFS_CMD_CIM_CASH_IN command; each time a new bunch is presented a new presentation timer should be set.

	Step
	Customer
	Application
	XFS Commands and Events

	1.-3.
	See No Items Inserted
	
	

	4.
	Customer inserts money
	
	If bItemsInsertedSensor == TRUE:

WFS_SRVE_CIM_ITEMSINSERTED

The Service Provider implicitly closes the shutter.

…

WFS_SRVE_CIM_SHUTTERSTATUS​CHANGED(WFS_CIM_SHTCLOSED)

The bill recognition begins.

	5.
	
	Insertion timer cancelled
	

	6.
	
	
	As a result of the bill processing n bunches of items must be returned to the customer.

	7.
	
	
	WFS_EXEE_CIM_INPUTREFUSE

	8.
	
	
	Return bunch 1 of items to customer.
The Service Provider implicitly opens the shutter and implicitly presents the bunch of items.

…

WFS_SRVE_CIM_SHUTTERSTATUS​CHANGED(WFS_CIM_SHTOPEN)

WFS_SRVE_CIM_ITEMSPRESENTED

	9.
	
	Tell the customer that the items were not accepted, and to take the items. The customer should be informed that the items will be returned in multiple bunches. If there are additional bunches to deliver then this can be determined from the output parameter of the WFS_SRVE_CIM_ITEMSPRESENTED event.

Presentation timer set
	

	10.
	Customer does not take the items
	The presentation timer elapses
	WFSCancelAsyncRequest is executed to end the WFS_CMD_CIM_CASH_IN command.

	
	
	
	* If command cancellation is supported the WFS_CMD_CIM_CASH_IN completes with WFS_ERR_CANCELED. WFS_SRVE_CIM_SHUTTERSTATUS​CHANGED(WFS_CIM_SHTCLOSED)

	11.
	
	All items are retracted.
	WFS_CMD_CIM_RETRACT

	12.
	
	End of transaction.
	

Last Bunch Taken

In this flow, two bunches are to be returned & the user takes all of the returned bunches within the required time, therefore WFS_CMD_CIM_CASH_IN command completes normally.

	Step
	Customer
	Application
	XFS Commands and Events

	1.-9.
	See First Bunch Not Taken
	
	

	10.
	Customer takes the bunch
	
	WFS_SRVE_CIM_ITEMSTAKEN

The Service Provider implicitly closes the shutter.

…

WFS_SRVE_CIM_SHUTTERSTATUS​CHANGED(WFS_CIM_SHTCLOSED)

	11.
	
	Presentation timer cancelled
	Return bunch 2 of items to customer. The Service Provider implicitly opens the shutter and implicitly presents the bunch of items.

…

WFS_SRVE_CIM_SHUTTERSTATUS​CHANGED(WFS_CIM_SHTOPEN)

WFS_SRVE_CIM_ITEMSPRESENTED

	12.
	
	
	* WFS_CMD_CIM_CASH_IN completes with WFS_SUCCESS.

	13.
	Customer takes the bunch of items.
	
	

	14.
	
	
	WFS_SRVE_CIM_ITEMSTAKEN

The Service Provider implicitly closes the shutter.

…

WFS_SRVE_CIM_SHUTTERSTATUS​CHANGED(WFS_CIM_SHTCLOSED)

	15.
	
	Display the amount recognized so far.
	

	16.
	
	Ask the customer for further actions:

If the customer wants to deposit the amount:

Continue with step 17.

If the customer wants to get back all items inserted so far see table "Cancellation by Customer (Implicit Shutter Control)"
	

	17.
	
	Transport the money into the cash units of type WFS_CIM_TYPERECYCLING / WFS_CIM_TYPECASHIN.
	WFS_CMD_CIM_CASH_IN_END

	18.
	
	Credit the money to the customer's account.
	

	19.
	
	End of transaction.
	

Card Dispenser

Class Name

CRD
Clarifications for WFS_INF_CRD_STATUS
Output Param
LPWFSCRDSTATUS lpStatus;

typedef struct _wfs_crd_status

{

WORD

fwDevice;

WORD

fwDispenser;

WORD

fwTransport;

WORD

fwMedia;

WORD

fwShutter;

LPSTR

lpszExtra;

DWORD

dwGuidLights[WFS_CRD_GUIDLIGHTS_SIZEMAX];

WORD

wDevicePosition;

USHORT

usPowerSaveRecoveryTime;

} WFSCRDSTATUS, *LPWFSCRDSTATUS;

Note that in subsequent releases the WFS_CRD_GUIDLIGHTS_MAX value has been changed to WFS_CRD_GUIDLIGHTS_SIZE.

Dispenser
Specifies the state of the card units including all retain bins as one of the following flags:

Value
Meaning

WFS_CRD_DISPCUOK
All card units present are in a good state.

WFS_CRD_DISPCUSTATE
The dispenser is operational, but oOne or more of the card units is in a low, empty or inoperative condition. Items can still be dispensed from at least one of the card units.

WFS_CRD_DISPCUSTOP
Due to a card unit failure dispensing is impossible. The dispenser is operational, but nNo items can be dispensed because all of the card units are in an empty or inoperative condition.

WFS_CRD_DISPCUUNKNOWN
Due to a hardware error or other condition, the state of the card units cannot be determined.

dwGuidLights [...]
Specifies the state of the guidance light indicators. A number of guidance light types are defined below. Vendor specific guidance lights are defined starting from the end of the array. The maximum guidance light index is WFS_CRD_GUIDLIGHTS_MAX-1.

Note that in subsequent releases the WFS_CRD_GUIDLIGHTS_MAX value has been changed to WFS_CRD_GUIDLIGHTS_SIZE.
Clarifications for WFS_EXEE_CRD_POWER_SAVE_CHANGE
Comments
None. If another device class compounded with this device enters into a power saving mode, this device will automatically enter into the same power saving mode and this event will be generated.
Bar Code Reader

Class Name

BCR

Clarifications for WFS_EXEE_BCR_POWER_SAVE_CHANGE
Comments
None. If another device class compounded with this device enters into a power saving mode, this device will automatically enter into the same power saving mode and this event will be generated.
Clarifications for C - Header File
..

/* Values of WFSBCRSTATUS.dwGuidLights [...]

 WFSBCRCAPS.dwGuidLights [...],

 WFSBCRSETGUIDLIGHT.wGuidLight */

#define WFS_BCR_GUIDANCE_NOT_AVAILABLE (0x00000000)

#define WFS_BCR_GUIDANCE_OFF (0x00000001)
/* The following value (WFS_BCR_GUIDANCE_ON) should NOT be used */

#define WFS_BCR_GUIDANCE_ON (0x00000002)

#define WFS_BCR_GUIDANCE_SLOW_FLASH (0x00000004)

#define WFS_BCR_GUIDANCE_MEDIUM_FLASH (0x00000008)

#define WFS_BCR_GUIDANCE_QUICK_FLASH (0x00000010)

#define WFS_BCR_GUIDANCE_CONTINUOUS (0x00000080)

#define WFS_BCR_GUIDANCE_RED (0x00000100)

#define WFS_BCR_GUIDANCE_GREEN (0x00000200)

#define WFS_BCR_GUIDANCE_YELLOW (0x00000400)

#define WFS_BCR_GUIDANCE_BLUE (0x00000800)

#define WFS_BCR_GUIDANCE_CYAN (0x00001000)

#define WFS_BCR_GUIDANCE_MAGENTA (0x00002000)

#define WFS_BCR_GUIDANCE_WHITE (0x00004000)
#define WFS_BCR_GUIDANCE_ENTRY (0x00100000)

#define WFS_BCR_GUIDANCE_EXIT (0x00200000)

Item Processing Module

Class Name

IPM

In this specification the terms “long edge” and “short edge” are used to describe the orientation of a check and the length of its edges. The diagram below illustrates these definitions.

[image: image3.png]copaLINE ooocrrrzzz

Short
Edge

Long Edge

Clarifications for WFS_INF_IPM_STATUS
Output Param
…
fwDevice
Specifies the state of the IPM. However, an fwDevice status of WFS_IPM_DEVONLINE does not necessarily imply that accepting can take place: the value of wAcceptor field must be taken into account. The state of the device as will be one of the following values:

wAcceptor
Supplies the state of the overall acceptor media bins as one of the following values:

Value
Meaning

WFS_IPM_ACCBINOK
All media bins present are in a good state.

WFS_IPM_ACCBINSTATE
One of the media bins present is in an abnormal state. The acceptor is operational, but one or more of the media bins is in a high, full or inoperative condition. Items can still be accepted into at least one of the media bins. The status of the bins can be obtained through the WFS_INF_IPM_MEDIA_BIN_INFO command.

WFS_IPM_ACCBINSTOP
Due to media bin problem accepting is impossible. No items can be accepted because all of the media bins are in a full or in an inoperative condition.

WFS_IPM_ACCBINUNKNOWN
Due to a hardware error or other condition, the state of the media bins cannot be determined.

lppPositions
…
wTransport
Supplies the state of the transport mechanism as one of the following values. The transport is defined as any area leading to or from the position:
Clarifications for WFS_INF_IPM_CAPABILITIES
Output Param
…
lpPrintSize
Pointer to a WFSIPMPRINTSIZE structure, NULL if device has no printing capabilities. If the media item is inserted in one of the orientations specified in fwInsertOrientation, the Service Provider will print on the back side of the media. If the media item is inserted in a different orientation to those specified in fwInsertOrientation then printing may occur on the front side, upside down or both.

typedef struct _wfs_ipm_print_size

{

WORD

wRows;

WORD

wCols;

} WFSIPMPRINTSIZE, *LPWFSIPMPRINTSIZE;

wRows
Specifies the maximum number of rows of text that can be printed on a media item. This value is zero if printing is not supported. This value is one for single line printers.

wCols
Specifies the maximum number of characters that can be printed on a row. This value is zero if printing is not supported.
Clarifications for WFS_INF_IPM_MEDIA_IN
Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

WFS_ERR_IPM_ALLBINSFULL
All media bins are full unusable due to being full, missing or inoperative, so no further items can be accepted.

Clarifications for WFS_INF_IPM_TRANSACTION_STATUS
Description
This command is used to request the status of the current or last media-in transaction as well as current status values outside a transaction. A media-in transaction consists of one or more WFS_CMD_IPM_MEDIA_IN commands. A media-in transaction is initiated by the WFS_CMD_IPM_MEDIA_IN command and remains active until the transaction is either confirmed through the WFS_CMD_IPM_MEDIA_IN_END command, or cancelled by the WFS_CMD_IPM_MEDIA_IN_ROLLBACK, the WFS_CMD_IPM_RETRACT_MEDIA or the WFS_CMD_IPM_RESET command. Multiple calls to the WFS_CMD_IPM_MEDIA_IN command can be made while a transaction is active to obtain additional items from the customer.
The following values returned by this command can change after the media-in transaction has ended if items are later moved in the device:

WFSIPMTRANSSTATUS.usMediaOnStacker
WFSIPMTRANSSTATUS.lpszExtra
WFSIPMMEDIASTATUS.wMediaLocation
WFSIPMMEDIASTATUS.usBinNumber
WFSIPMMEDIASTATUS.wCustomerAccess

Output Param
…
usMediaOnStacker
Contains the total number of media items currently on the stacker (including usLastMediaAddedToStacker), or WFS_IPM_MEDIANUMBERUNKNOWN if it is unknown. This count only applies to devices with stackers and is persistent. This value can change outside of a Media In transaction as the media moves within the device.
lppMediaInfo
Pointer to a NULL-terminated array of pointers to WFSIPMMEDIASTATUS structures. This array contains details of the media items processed during the current or last transaction (depending on the value of wMediaInTransaction). The array contains one element for every item that has been allocated a media ID (i.e. IPM items that have been reported to the application). If there are no media items then lppMediaInfo is NULL. The WFSIPMIMAGEDATA structure is described in the WFS_CMD_IMP_READ_IMAGE command section. The media info is available until a new transaction is started with the WFS_CMD_IPM_MEDIA_IN command. The media location information may be updated after a transaction is completed, e.g. if media that was presented to the customer is subsequently retracted. The media info is persistent.
typedef struct _wfs_ipm_mediastatus

{

USHORT

usMediaID;

WORD

wMediaLocation;

USHORT

usBinNumber;

ULONG

ulCodelineDataLength;

LPBYTE

lpbCodelineData;

WORD

wMagneticReadIndicator;

LPWFSIPMIMAGEDATA
*lppImage;

WORD

fwInsertOrientation;

LPWFSIPMMEDIASIZE
lpMediaSize;

WORD

wMediaValidity;

WORD

wCustomerAccess;

} WFSIPMMEDIASTATUS, *LPWFSIPMMEDIASTATUS;

wMediaLocation
Specifies the location of the media item. This value can change outside of a Media In transaction as the media moves within the device. This value is specified as one of the following values:

Value
Meaning

...

usBinNumber
If wMediaLocation is WFS_IPM_LOCATION_BIN then this field contains the bin number where the media was stored. This value can change outside of a Media In transaction as the media moves within the device.
lpMediaSize
Pointer to a WFSIPMMEDIASIZE structure that specifies the size of the media item. lpMediaSize is NULL if the device does not support media size measurement.

typedef struct _wfs_ipm_media_size

{

ULONG

ulSizeX;

ULONG

ulSizeY;

} WFSIPMMEDIASIZE, *LPWFSIPMMEDIASIZE;
ulSizeX
Specifies the width length of the long edge of the media in millimeters, or zero if unknown.

ulSizeY
Specifies the height length of the short edge of the media in millimeters, or zero if unknown.
wCustomerAccess
Specifies if the media item has been in customer access since it was first deposited, e.g. it has been retracted from a position with customer access. This value can change outside of a MediaIn transaction as the media moves within the device. This value is specified as one of the following values:

Value
Meaning

….

lpszExtra
Pointer to a list of vendor-specific, or any other extended, information. The information is returned as a series of “key=value” strings so that it is easily extensible by Service Providers. Each string is null-terminated, with the final string terminating with two null characters. An empty list may be indicated by either a NULL pointer or a pointer to two consecutive null characters. This value can change outside of a MediaIn transaction as the media moves within the device.
Clarifications for WFS_CMD_IPM_MEDIA_IN
Input Param
…
lpszImagePath
Specifies the full path name of the folder where the image will be stored, e.g. “C:\TEMP”. The actual file name for the image produced will be vendor specific. The name used is reported in the event containing the item data for each media item. The Service Provider may re-use file names from the start of each media in transaction, so applications must manage the file lifetime as required. If NULL is provided for this parameter then the command will be rejected with the WFS_ERR_INVALID_DATA error. If the folder does not exist or cannot be accessed by the Service Provider then the command will be rejected with the WFS_ERR_IPM_FILEIOERROR error.
By default lpsz… path or file names are single zero terminated and can not contain UNICODE characters.
Output Param
…
wMediaFeeder
Supplies the state of the media feeder. This value indicates if there are items on the media feeder waiting processing via the WFS_CMD_IPM_GET_NEXT_ITEM command. This value can be one of the following values:

Value
Meaning

WFS_IPM_FEEDERISEMPTY
The media feeder is empty.

WFS_IPM_FEEDERISNOTEMPTY
The media feeder is not empty.

WFS_IPM_FEEDERISNOTSUPPORTED
The physical device has no media feeder.

Clarifications for WFS_CMD_IPM_READ_IMAGE
Input Param
…
lpszImagePath
Specifies the full path and file name where the image will be stored. If NULL is provided for this parameter then the command will be rejected with the WFS_ERR_INVALID_DATA error. If the folder does not exist or cannot be accessed by the Service Provider then the command will be rejected with the WFS_ERR_IPM_FILEIOERROR error.
By default lpsz… path or file names are single zero terminated and can not contain UNICODE characters.
Output Param
…
lpszImageFile
Specifies the full path and file name where the image is stored, e.g. “C:\Temp\FrontImage.bmp”. The path and file name used is selected by the input parameters.
By default lpsz… path or file names are single zero terminated and can not contain UNICODE characters.
lpMediaSize
Pointer to a WFSIPMMEDIASIZE structure that specifies the size of the media item. lpMediaSize is NULL if the device does not support media size measurement.

typedef struct _wfs_ipm_media_size

{

ULONG

ulSizeX;

ULONG

ulSizeY;

} WFSIPMMEDIASIZE, *LPWFSIPMMEDIASIZE;
ulSizeX
Specifies the width length of the long edge of the media in millimeters, or zero if unknown.

ulSizeY
Specifies the height length of the short edge of the media in millimeters, or zero if unknown.
Clarifications for WFS_CMD_IPM_GET_NEXT_ITEM
Output Param
…
wMediaFeeder
Supplies the state of the media feeder. This value indicates if there are items on the media feeder waiting processing via the WFS_CMD_IPM_GET_NEXT_ITEM command. This value can be one of the following values:

Value
Meaning

WFS_IPM_FEEDERISEMPTY
The media feeder is empty.

WFS_IPM_FEEDERISNOTEMPTY
The media feeder is not empty.

WFS_IPM_FEEDERISNOTSUPPORTED
The physical device has no media feeder.

Clarifications for WFS_CMD_IPM_PRESENT_MEDIA
Description
...

A WFS_EXEE_IPM_MEDIA_PRESENTED event is generated when media is presented and a WFS_SRVE_IPM_MEDIA_TAKEN event is generated when the media is taken (if the position has a taken sensor WFSIPMPOSCAPS.bItemsTakenSensor).

Clarifications for WFS_CMD_IPM_RETRACT_MEDIA
Description
The media is removed from its present position (media present in device, media entering, unknown position) and stored in the area specified in the input parameters.

A threshold event is sent if the high or full condition is reached as a result of this command. If the bin is already full and the command cannot be executed, an error is returned and the media remains in its present position.
If media items are to be endorsed/stamped during this operation, then the WFS_CMD_IPM_PRINT_TEXT must be called prior to the WFS_CMD_IPM_RETRACT_MEDIA command. Where endorsing is specified, the same text will be printed on all media items that are detected.

Clarifications for WFS_CMD_IPM_PRINT_TEXT
Description
This command is used to predefine the data that will be printed on a media item and nothing is printed during execution of this command. On devices with stackers the data is printed when the bunch is processed through the WFS_CMD_IPM_MEDIA_IN_END command. The request will not be performed if the bunch is returned with the WFS_CMD_IPM_MEDIA_ROLLBACK. On devices without stackers the data is printed when the WFS_CMD_IPM_ACTION_ITEM command is executed.

For devices that can print multiple lines each line is separated by a Carriage Return (Unicode 0x000D) and Line Feed (Unicode 0x000A) sequence.

The media has to be inserted before this command is called. If no media is present the command returns the error code WFS_ERR_IPM_NOMEDIAPRESENT.
This command can also be used to endorse/stamp media items detected during both WFS_CMD_IPM_RETRACT_MEDIA and WFS_CMD_IPM_RESET commands. In this case, usMediaID must be zero and the same text will be printed on all media items that are detected. When usMediaID is zero, the data that is specified in the WFS_CMD_IPM_PRINT_TEXT command will override any text that has previously been specified in any earlier WFS_CMD_IPM_PRINT_TEXT commands in the current media-in transaction.
Clarifications for WFS_CMD_IPM_RESET
Description
This command is used by the application to perform a hardware reset which will attempt to return the IPM device to a known good state. This command does not over-ride a lock obtained on another application or service handle.
The device will attempt to retract or eject any items found anywhere within the device. This may not always be possible because of hardware problems. One or more WFS_SRVE_IPM_MEDIADETECTED events will inform the application where items were actually moved to.
If media items are to be endorsed/stamped during this operation, then the WFS_CMD_IPM_PRINT_TEXT must be called prior to the WFS_CMD_IPM_RESET command. Where endorsing is specified, the same text will be printed on all media items that are detected.

This command ends a Media-In transaction started by WFS_CMD_IPM_MEDIA_IN.

Input Param
…
usBinNumber
Number of the retract bin the media is retracted to. It is only relevant if dwMediaControl equals WFS_IPM_CTRLRESETRETRACTTOBIN. The numbers of available media bins can be obtained through the usBinNumber and fwType fields returned by the WFS_INF_IPM_MEDIA_BIN_INFO command.
Clarifications for WFS_CMD_IPM_GET_IMAGE_AFTER_PRINT
Output Param
…
lpszImagePath
Specifies the full path name of the folder where the image will be stored, e.g. “C:\TEMP”. The actual file name for the image produced will be vendor specific. The name used is reported in the event containing the image data. The Service Provider may re-use file names from the start of each media in transaction, so applications must manage the file lifetime as required. If NULL is provided for this parameter then the command will be rejected with the WFS_ERR_INVALID_DATA error. If the folder does not exist or cannot be accessed by the Service Provider then the command will be rejected with the WFS_ERR_IPM_FILEIOERROR error.
By default lpsz… path or file names are single zero terminated and can not contain UNICODE characters.
Clarifications for WFS_SRVE_IPM_MEDIATAKEN

Comments
Note that since this event can occurs after the completion of a function that includes a media eject, it is not an execute event.

Clarifications for WFS_EXEE_IPM_MEDIAREFUSED
Event Param
LPWFSIPMMEDIAREFUSED lpMediaRefused;

typedef struct _wfs_ipm_media_refused

{

WORD

wReason;

WORD

wMediaLocation;

BOOL

bPresentRequired;

LPWFSIPMMEDIASIZE
lpMediaSize;

} WFSIPMMEDIAREFUSED, *LPWFSIPMMEDIAREFUSED;

wReason
Specified as one of the following values:

Value
Meaning
…
WFS_IPM_REFUSED_TOOLONG
The media item (or bunch of items) long edge was too long.

WFS_IPM_REFUSED_TOOSHORT
The media item (or bunch of items) long edge was too short.

WFS_IPM_REFUSED_TOOWIDE
The media item (or bunch of items) short edge was too wide.

WFS_IPM_REFUSED_TOONARROW
The media item (or bunch of items) short edge was too narrow.

lpMediaSize
Pointer to a WFSIPMMEDIASIZE structure that specifies the size of the refused media (or bunch of media). lpMediaSize is NULL if the device does not support media size measurement.

typedef struct _wfs_ipm_media_size

{

ULONG

ulSizeX;

ULONG

ulSizeY;

} WFSIPMMEDIASIZE, *LPWFSIPMMEDIASIZE;
ulSizeX
Specifies the width length of the long edge of the media in millimeters, or zero if unknown.

ulSizeY
Specifies the height length of the short edge of the media in millimeters, or zero if unknown.
Clarifications for WFS_EXEE_IPM_MEDIADATA
Event Param
…
lpszImageFile
Specifies the full path and file name where the image is stored, e.g. “C:\Temp\FrontImage.bmp”. Each image requested is stored in a unique file with a unique name allocated by the Service Provider. The folder location where the file is stored is specified in the input parameters of the WFS_CMD_IPM_MEDIA_IN command. File names which are allocated by the Service Provider will be reused in the next transaction.
By default lpsz… path or file names are single zero terminated and can not contain UNICODE characters.
lpMediaSize
Pointer to a WFSIPMMEDIASIZE structure that specifies the size of the media item. lpMediaSize is NULL if the device does not support media size measurement.

typedef struct _wfs_ipm_media_size

{

ULONG

ulSizeX;

ULONG

ulSizeY;

} WFSIPMMEDIASIZE, *LPWFSIPMMEDIASIZE;
ulSizeX
Specifies the width length of the long edge of the media in millimeters, or zero if unknown.

ulSizeY
Specifies the height length of the short edge of the media in millimeters, or zero if unknown.
Clarifications for WFS_EXEE_IPM_POWER_SAVE_CHANGE
Comments
None. If another device class compounded with this device enters into a power saving mode, this device will automatically enter into the same power saving mode and this event will be generated.
Migration Documents

Cash In Module

Class Name

CIM

Clarifications for WFS_INF_CIM_CASH_IN_STATUS

Output Param
…
wStatus
Status of the cash-in transaction. Possible values are:

Value
Meaning

WFS_CIM_CIOK
The cash-in transaction is complete.
WFS_CIM_CIROLLBACK
The cash-in transaction was rolled back.

WFS_CIM_CIACTIVE
There is a cash-in transaction active.

WFS_CIM_CIRETRACT
The cash-in transaction ended with the items being retracted.

WFS_CIM_CIUNKNOWN
The state of the cash-in transaction is unknown.

WFS_CIM_CIRESET
The cash-in transaction ended when the WFS_CMD_CIM_RESET command was executed.

PIN

The PIN generates random number and sends it to the host

The PIN verifies the messages and if validate stores the key. The PIN then sends a message back to the Host.

Host

The Host starts the Key Exchange process.

The Host sends the Signed Key Transport Key message to the ATM.

The Host receives the message and verifies the message and checks to make sure it is talking to to the right ATM.

Request RATM

Sign(SKHost)[RHost||RATM||IATM||RSACrypt(PKATM)[IHost||KKTK]]

RATM

Sign(SKATM)[RHost||RATM||IHost]

Host

Host wants to take CA duties, sends new Certificate

PIN

The PIN verifies the message, if valid the PIN stores the new CA.	

The PIN then sends the thumbprint.

Sign(SKHost)[CertCA]

TPATM

page
- 43 of 88 -

_979057745.vsd

